scholarly journals Molecular Cloning and Functional Characterization of CpMYC2 and CpBHLH13 Transcription Factors from Wintersweet (Chimonanthus praecox L.)

Plants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 785
Author(s):  
Muhammad Zeshan Aslam ◽  
Xiang Lin ◽  
Xiang Li ◽  
Nan Yang ◽  
Longqing Chen

Wintersweet (Chimonanthus praecox L.) is an ornamental and economically significant shrub known for its unique flowering characteristics, especially the emission of abundant floral volatile organic compounds. Thus, an understanding of the molecular mechanism of the production of these compounds is necessary to create new breeds with high volatile production. In this study, two bHLH transcription factors (CpMYC2 and CpbHLH13) of Wintersweet H29 were functionally characterized to illustrate their possible role in the production of volatile compounds. The qRT-PCR results showed that the expression of CpMYC2 and CpbHLH13 increased from the flower budding to full bloom stage, indicating that these two genes may play an essential role in blooming and aroma production in wintersweet. Gas chromatography-mass spectroscopy (GC-MS) analysis revealed that the overexpression of CpMYC2 in arabidopsis (Arabidopsis thaliana) AtMYC2-2 mutant (Salk_083483) and tobacco (Nicotiana tabaccum) genotype Petit Havana SR1 significantly increased floral volatile monoterpene, especially linalool, while the overexpression of CpbHLH13 in Arabidopsis thaliana ecotype Columbia-0 (Col-0) and tobacco genotype SR1 increased floral sesquiterpene β-caryophyllene production in both types of transgenic plants respectively. High expression of terpene synthase (TPS) genes in transgenic A. thaliana along with high expression of CpMYC2 and CpbHLH13 in transgenic plants was also observed. The application of a combination of methyl jasmonic acid (MeJA) and gibberellic acid (GA3) showed an increment in linalool production in CpMYC2-overexpressing arabidopsis plants, and the high transcript level of TPS genes also suggested the involvement of CpMYC2 in the jasmonic acid (JA) signaling pathway. These results indicate that both the CpMYC2 and CpbHLH13 transcription factors of wintersweet are possibly involved in the positive regulation and biosynthesis of monoterpene (linalool) and sesquiterpene (β-caryophyllene) in transgenic plants. This study also indicates the potential application of wintersweet as a valuable genomic material for the genetic modification of floral scent in other flowering plants that produce less volatile compounds.

2019 ◽  
Vol 40 (4) ◽  
pp. 557-572 ◽  
Author(s):  
Wenjie Ding ◽  
Qixia Ouyang ◽  
Yuli Li ◽  
Tingting Shi ◽  
Ling Li ◽  
...  

Abstract WRKY transcription factors, one of the largest transcription factor families, play important roles in regulating the synthesis of secondary metabolites. In sweet osmanthus (Osmanthus fragrans), the monoterpenes have been demonstrated as the most important volatile compounds, and the W-box, which is the cognate binding site of WRKY transcription factors, could be identified in most of the terpene-synthesis-related genes’ promoters. However, the role of the WRKY family in terpene synthesis in sweet osmanthus has rarely been examined. In this study, 154 WRKY genes with conserved WRKY domain were identified and classified into three groups. The group II was further divided into five subgroups, and almost all members of IId contained a plant zinc cluster domain. Eight OfWRKYs (OfWRKY7/19/36/38/42/84/95/139) were screened from 20 OfWRKYs for their flower-specific expression patterns in different tissues. Simultaneously, the expression patterns of OfWRKYs and emission patterns of volatile compounds during the flowering process were determined and gas chromatography-mass spectrometry results showed that monoterpenes, such as linalool and ocimene, accounted for the highest proportion, contributing to the floral scent of sweet osmanthus in two cultivars. In addition, correlation analysis revealed the expression patterns of OfWRKYs (OfWRKY7/19/36/139) were each correlated with distinct monoterpenes (linalool, linalool derivatives, ocimene and ocimene derivatives). Subcellular localization analysis showed that p35S::GFP–OfWRKY7/38/95/139 were localized in the nucleus and OfWRKY139 had very strong transactivation activity. Collectively, the results indicated potential roles of OfWRKY139 and OfWRKYs with plant zinc cluster domain in regulating synthesis of aromatic compounds in sweet osmanthus, laying the foundation for use of OfWRKYs to improve the aroma of ornamental plants.


Cell Research ◽  
2008 ◽  
Vol 18 (7) ◽  
pp. 756-767 ◽  
Author(s):  
Qingyun Bu ◽  
Hongling Jiang ◽  
Chang-Bao Li ◽  
Qingzhe Zhai ◽  
Jie Zhang ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2014
Author(s):  
Farhat Abbas ◽  
Yanguo Ke ◽  
Yiwei Zhou ◽  
Rangcai Yu ◽  
Muhammad Imran ◽  
...  

The R2R3-MYB transcription factors (TFs) play several key roles in numerous plant biological processes. Hedychium coronarium is an important ornamental plant well-known for its elegant flower shape and abundant aroma type. The floral aroma of H. coronarium is due to the presence of a large amount of terpenes and benzenoids. However, less is known about the role of R2R3-MYB TFs in the regulatory mechanism of floral aroma production in this breed. Herein, we isolate and functionally characterize the R2R3-MYB TF HcMYB132, which is potentially involved in regulating floral aroma synthesis. Sequence alignment analysis revealed that it includes a nuclear localization signal NLS(s) and a 2R, 3R motif signature in the sequences. A subcellular localization assay revealed that HcMYB132 protein localizes to the nucleus. Real-time qPCR assays showed that HcMYB132 is specifically expressed in flowers and its expression pattern correlates with the emission of floral volatile compounds. In HcMYB132-silenced flowers, the levels of floral volatile compounds were significantly reduced, and the expression of key structural volatile synthesis genes was downregulated compared to control. Collectively, these results suggest that HcMYB132 might play a significant role in the regulation of terpenoid biosynthesis in H. coronarium.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Weimin Jiang ◽  
Xueqing Fu ◽  
Qifang Pan ◽  
Yueli Tang ◽  
Qian Shen ◽  
...  

Artemisinin is an effective component of drugs against malaria. The regulation of artemisinin biosynthesis is at the forefront of artemisinin research. Previous studies showed that AaWRKY1 can regulate the expression ofADS, which is the first key enzyme in artemisinin biosynthetic pathway. In this study,AaWRKY1was cloned, and it activated ADSpro and CYPpro in tobacco using dual-LUC assay. To further study the function of AaWRKY1, pCAMBIA2300-AaWRKY1 construct under 35S promoter was generated. Transgenic plants containingAaWRKY1were obtained, and four independent lines with high expression ofAaWRKY1were analyzed. The expression ofADSandCYP, the key enzymes in artemisinin biosynthetic pathway, was dramatically increased inAaWRKY1-overexpressingA. annuaplants. Furthermore, the artemisinin yield increased significantly inAaWRKY1-overexpressingA. annuaplants. These results showed that AaWRKY1 increased the content of artemisinin by regulating the expression of bothADSandCYP. It provides a new insight into the mechanism of regulation on artemisinin biosynthesis via transcription factors in the future.


2011 ◽  
Vol 136 (5) ◽  
pp. 307-314 ◽  
Author(s):  
Yifan Jiang ◽  
Xinlu Chen ◽  
Hong Lin ◽  
Fei Wang ◽  
Feng Chen

Volatile chemicals emitted from the flowers of chinese wisteria (Wisteria sinenesis) and japanese wisteria (W. floribunda) were collected using a dynamic headspace technique and identified using gas chromatography–mass spectrometry; 28 and 22 compounds were detected from chinese wisteria and japanese wisteria flowers, respectively. These chemicals can be classified into four major classes, including fatty acid derivatives, benzenoids/phenylpropanoids, terpenoids, and nitrogen-containing compounds. Two monoterpenes, (E)-β-ocimene and linalool, belonging to the class of terpenoids, were the most abundant compounds emitted from both species. Despite strong similarity, the floral volatile profiles of the two species displayed variations in both quality and quantity. Chinese wisteria was selected as a model for further study of volatile emission from different parts of flowers, emission dynamics, and regulation of floral scent production. Although floral volatiles were detected from all flower parts, petals emitted the most. The emission of floral volatiles displayed a diurnal pattern with the maximal emissions occurring during the daytime. This rhythmic pattern was determined to be light-dependent. Regulation of floral volatile emission by exogenous chemicals, including silver thiosulphate (an ethylene inhibitor), salicylic acid, and jasmonic acid, also was analyzed. Generally, jasmonic acid promoted the emission of floral volatiles. In contrast, neither silver thiosulphate nor salicylic acid showed a significant effect on floral volatile emission. The results presented in this article suggest that wisteria can serve as a useful system for exploring novel biochemistry of floral scent biosynthesis. They also build a foundation for the study of the biological/ecological significance of floral volatiles on the reproductive biology of wisteria species.


2019 ◽  
Vol 20 (21) ◽  
pp. 5325 ◽  
Author(s):  
Huang ◽  
Liu ◽  
Huang ◽  
Ma ◽  
Li ◽  
...  

The WRKY transcription factors are one of the most important plant-specific transcription factors and play vital roles in various biological processes. However, the functions of WRKY genes in wintersweet (Chimonanthus praecox) are still unknown. In this report, a group IIc WRKY gene, CpWRKY71, was isolated from wintersweet. CpWRKY71 was localized to the nucleus and possessed transcriptional activation activity. qRT-PCR (quantitative real-time PCR) analysis showed that CpWRKY71 was expressed in all tissues tested, with higher expression in flowers and senescing leaves. During the flower development, the highest expression was detected in the early-withering stage, an obvious expression of CpWRKY71 was also observed in the flower primordia differentiation and the bloom stage. Meanwhile, the expression of CpWRKY71 was influenced by various abiotic stress and hormone treatments. The expression patterns of the CpWRKY71 gene were further confirmed in CpWRKY71pro:GUS (β-glucuronidase) plants. Heterologous overexpression of CpWRKY71 in Arabidopsis caused early flowering. Consistent with the early flowering phenotype, the expression of floral pathway integrators and floral meristem identity (FMI) genes were significantly up-regulated in transgenic plants. In addition, we also observed that the transgenic plants of CpWRKY71 exhibited precocious leaf senescence. In conclusion, our results suggested that CpWRKY71 may be involved in the regulation of flowering and leaf senescence in Arabidopsis. Our study provides a foundation for further characterization of CpWRKY genes function in wintersweet, and also enrich our knowledge of molecular mechanism about flowering and senescence in wintersweet.


2019 ◽  
Vol 104 (1) ◽  
pp. 83-104 ◽  
Author(s):  
Pedro Díaz Jiménez ◽  
Heiko Hentrich ◽  
Pedro Adrián Aguilar-Rodríguez ◽  
Thorsten Krömer ◽  
Marion Chartier ◽  
...  

This paper presents an exhaustive review of the current knowledge on pollination of Araceae genera with bisexual flowers. All available studies on floral morphology, flowering sequence, floral scent, floral thermogenesis, floral visitors, and pollinators were carefully examined, with emphasis on the species-rich genera Anthurium Schott, Monstera Adans., and Spathiphyllum Schott. Genera with bisexual flowers are among the early-diverging lineages in Araceae, but present adaptations in their floral ecology to a great variety of pollination vectors, such as bees, beetles, flies, and, unusually, wind. These clades have developed highly derived pollination systems, involving the use of floral scent as a reward. We conclude that floral scent chemistry plays a key role in the pollination biology of the plants and that, in some genera, reproductive isolation through variation in the emitted floral volatile compounds may have been the decisive factor in the speciation processes of sympatric species.


2021 ◽  
Vol 22 (15) ◽  
pp. 8193
Author(s):  
Daniel Pérez-Cremades ◽  
Ana B. Paes ◽  
Xavier Vidal-Gómez ◽  
Ana Mompeón ◽  
Carlos Hermenegildo ◽  
...  

Background/Aims: Estrogen has been reported to have beneficial effects on vascular biology through direct actions on endothelium. Together with transcription factors, miRNAs are the major drivers of gene expression and signaling networks. The objective of this study was to identify a comprehensive regulatory network (miRNA-transcription factor-downstream genes) that controls the transcriptomic changes observed in endothelial cells exposed to estradiol. Methods: miRNA/mRNA interactions were assembled using our previous microarray data of human umbilical vein endothelial cells (HUVEC) treated with 17β-estradiol (E2) (1 nmol/L, 24 h). miRNA–mRNA pairings and their associated canonical pathways were determined using Ingenuity Pathway Analysis software. Transcription factors were identified among the miRNA-regulated genes. Transcription factor downstream target genes were predicted by consensus transcription factor binding sites in the promoter region of E2-regulated genes by using JASPAR and TRANSFAC tools in Enrichr software. Results: miRNA–target pairings were filtered by using differentially expressed miRNAs and mRNAs characterized by a regulatory relationship according to miRNA target prediction databases. The analysis identified 588 miRNA–target interactions between 102 miRNAs and 588 targets. Specifically, 63 upregulated miRNAs interacted with 295 downregulated targets, while 39 downregulated miRNAs were paired with 293 upregulated mRNA targets. Functional characterization of miRNA/mRNA association analysis highlighted hypoxia signaling, integrin, ephrin receptor signaling and regulation of actin-based motility by Rho among the canonical pathways regulated by E2 in HUVEC. Transcription factors and downstream genes analysis revealed eight networks, including those mediated by JUN and REPIN1, which are associated with cadherin binding and cell adhesion molecule binding pathways. Conclusion: This study identifies regulatory networks obtained by integrative microarray analysis and provides additional insights into the way estradiol could regulate endothelial function in human endothelial cells.


Sign in / Sign up

Export Citation Format

Share Document