scholarly journals The deformation and granitisation of Ketilidian rocks in the Nanortalik area, S. Greenland

1966 ◽  
Vol 59 ◽  
pp. 1-102
Author(s):  
A Escher

The Nanortalik peninsula, situated between the fjords of Tasermiut and Sarqâ, is largely composed of Ketilidian schists, quartzites and volcanic rocks. All these rocks are more or less strongly folded. The folding took place probably in three successive phases during the Ketilidian period : A first deformation resulting in folds with NNE trending axes, was followed by a second major phase of folding with NW axes. This second folding was essentially plastic. A third deformation, acting probably on a more rigid mass, was characterised by the formation of fracturec1eavage. Third-period folds possess very long wavelengths; their axes are oriented NNE to NE. Migmatisation started probably during the second deformation period resulting in the formation of many dykes and veins of pegmatite and aplite. Four generations of Ketilidian pegmatites can be recognised. Most of them appear to have been formed by metasomatic replacement. It seems that during the Ketilidian orogeny, the evolution of the schists and gneissic schists tended to a granodioritic composition. Potassium metasomatism only became active at the end of the Ketilidian period. In the NE part of the Nanortalik peninsula, three Sanerutian granites can be observed. These granites are similar in composition (quartz-microline-biotite), but possess different ages and textures. The time interval between the last Ketilidian deformation and the emplacement of the first Sanerutian granite was marked by the intrusion of several metadoleritic dykes. The first and principal Sanerutian granite usually shows an indistinct foliation due to numerous oriented inc1usions. Field evidence indicates that this granite was formed mainly by replacement of volcanic rocks. Chemical analyses show that large amounts of K, Si and Na have been supplied to produce the granitisation of the volcanic rocks. The second Sanerutian granite is characterised by a coarse porphyroblastic texture and appears to have been emplaced partially by the intrusion of a melt and partially by a subsequent replacement of the host-rock. Finally, the last Sanerutian granite displays all the characteristics of a pure intrusive body. It is generally very fine-grained and forms many cross-cutting dykes.

1978 ◽  
Vol 42 (324) ◽  
pp. 427-434 ◽  
Author(s):  
D. H. M. Alderton ◽  
N. J. Jackson

SummarySeveral discordant, garnet-bearing bodies are described from the St. Just part of the Land's End granite aureole, Cornwall. It is suggested that these formed by a combination of metasomatic replacement and dilation with concomitant precipitation. Other Ca-Fe aluminosilicates (containing large amounts of Zn, Sn, B, and Be) are also present in the bodies. The chemical, petrographic, and field evidence suggests that the introduced material was transported by hydrothermal fluids. These fluids could well be related to the intrusion of the granite and the earliest phases of ore mineralization. Chemical analyses of garnets, calcic amphiboles and one apatite, epidote, diopside, and axinite are given.


Solid Earth ◽  
2011 ◽  
Vol 2 (2) ◽  
pp. 205-217 ◽  
Author(s):  
P. Skyttä ◽  
T. Hermansson ◽  
J. Andersson ◽  
M. Whitehouse ◽  
P. Weihed

Abstract. New U-Th-Pb zircon data (SIMS) from three intrusive phases of the Palaeoproterozoic Viterliden intrusion in the western Skellefte District, central Fennoscandian Shield, dates igneous emplacement in a narrow time interval at about 1.89 Ga. A locally occurring quartz-plagioclase porphyritic tonalite, here dated at 1889 ± 3 Ma, is considered the youngest of the intrusive units, based on the new age data and field evidence. This supports an existing interpretation of its fault-controlled emplacement after intrusion of the dominating hornblende-tonalite units, in this study dated at 1892 ± 3 Ma. The Viterliden magmatism was synchronous with the oldest units of the Jörn type early-orogenic intrusions in the eastern part of the district (1.89–1.88 Ga; cf. Gonzàles Roldán, 2010). A U-Pb zircon age for a felsic metavolcanic rock from the hanging-wall to the Kristineberg VMS deposit, immediately south of the Viterliden intrusion, is constrained at 1883 ± 6 Ma in this study. It provides a minimum age for the Kristineberg ore deposit and suggests contemporaneous igneous/volcanic activity throughout the Skellefte District. Furthermore, it supports the view that the Skellefte Group defines a laterally continuous belt throughout this "ore district". Tentative correlation of the 1889 ± 3 Ma quartz-plagioclase porphyritic tonalite with the Kristineberg "mine porphyry" suggests that these units are coeval at about 1.89 Ga. Based on the new age determinations, the Viterliden intrusion may equally well have intruded into or locally acted as a basement for the ore-hosting Skellefte Group volcanic rocks.


2011 ◽  
Vol 3 (1) ◽  
pp. 355-383 ◽  
Author(s):  
P. Skyttä ◽  
T. Hermansson ◽  
J. Andersson ◽  
P. Weihed

Abstract. New U-Th-Pb zircon data (SIMS) from three intrusive phases of the Palaeoproterozoic Viterliden intrusion in the western Skellefte District, central Fennoscandian Shield, dates igneous emplacement in a narrow time interval at about 1.89 Ga. A locally occurring quartz-plagioclase porphyritic tonalite, here dated at 1889 ± 3 Ma, is, based on the new age data and field evidence, considered the youngest of the intrusive units. This supports an existing interpretation of its fault-controlled emplacement after intrusion of the dominating hornblende-tonalite units, in this study dated at 1892 ± 3 Ma. The Viterliden magmatism was synchronous with the oldest units of the Jörn type early-orogenic intrusions in the eastern part of the district (1.89–1.88 Ga; cf. Gonzàles Roldán, 2010). A U-Pb zircon age for a felsic metavolcanic rock from the hanging-wall to the Kristineberg VMS deposit, immediately south of the Viterliden intrusion, is in this study constrained in the 1.89–1.88 Ga time interval. It provides a minimum age for the Kristineberg ore deposit and suggests contemporaneous igneous/volcanic activity throughout the Skellefte District. Furthermore, it supports the view that the Skellefte Group defines a laterally continuous belt throughout this "ore district". Tentative correlation of the 1889 ± 3 Ma quartz-plagioclase porphyritic tonalite with the Kristineberg "mine porphyry", which cuts the altered ore-hosting metavolcanic rocks, further constrain the minimum age for ore deposition at 1889 ± 3 Ma. Based on the new age determinations, the Viterliden intrusion may equally well have intruded into, or locally acted as a basement for the ore-hosting Skellefte Group volcanic rocks.


Author(s):  
Gejing Li ◽  
D. R. Peacor ◽  
D. S. Coombs ◽  
Y. Kawachi

Recent advances in transmission electron microscopy (TEM) and analytical electron microscopy (AEM) have led to many new insights into the structural and chemical characteristics of very finegrained, optically homogeneous mineral aggregates in sedimentary and very low-grade metamorphic rocks. Chemical compositions obtained by electron microprobe analysis (EMPA) on such materials have been shown by TEM/AEM to result from beam overlap on contaminant phases on a scale below resolution of EMPA, which in turn can lead to errors in interpretation and determination of formation conditions. Here we present an in-depth analysis of the relation between AEM and EMPA data, which leads also to the definition of new mineral phases, and demonstrate the resolution power of AEM relative to EMPA in investigations of very fine-grained mineral aggregates in sedimentary and very low-grade metamorphic rocks.Celadonite, having end-member composition KMgFe3+Si4O10(OH)2, and with minor substitution of Fe2+ for Mg and Al for Fe3+ on octahedral sites, is a fine-grained mica widespread in volcanic rocks and volcaniclastic sediments which have undergone low-temperature alteration in the oceanic crust and in burial metamorphic sequences.


1972 ◽  
Vol 9 (1) ◽  
pp. 36-42 ◽  
Author(s):  
Calvert C. Bristol

X-ray powder diffraction methods, successful in quantitative determination of silicate minerals in fine-grained rocks, have been applied to the determination of calcite, dolomite, and magnesite in greenschist facies meta-volcanic rocks. Internal standard graphs employing two standards (NaCl and Mo) have been determined.Carbonate mineral modes (calcite and dolomite) for 6 greenschist facies meta-volcanic rocks obtained by the X-ray powder method have been compared to normative carbonate mineral contents calculated for the same rocks. This comparison showed a maximum variation of 7.7 wt.% between the X-ray modes and the normative carbonate mineral contents of the rocks. Maximum standard deviation for the X-ray modes of these rocks was equivalent to 4.4 wt.%.


Author(s):  
Emmanuel Gabet

Hildreth et al. (2021) analyzed a set of table mountains near the San Joaquin River that are capped by a 9.3 Ma trachyandesite lava flow and concluded that, since the deposition of the volcanic rocks, the table mountains have been tilted 1.07° due to uplift of the central Sierra Nevada. While Gabet (2014) suggested that, under a limited set of conditions, the size of fluvial gravels under the table mountains would support the hypothesis of postdepositional uplift, the authors claimed that their evidence is more definitive. In addition, the authors proposed that the central Sierra Nevada tilted as a rigid block. However, their analyses rely on inferences and assumptions that are not supported by field evidence.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Fathan Hanifi Mada Mahendra ◽  
I Gde Budi Indrawan ◽  
Sugeng Sapto Surjono

The Gedangsari and Ngawen area is predominantly composed of volcanic and volcaniclastic sequencesdistributed east – west direction of the northern parts of Southern Mountain. The massive tectonism as well as tropical climatein this region have been producing weathering profiles in varying thickness which inevitably affects thegeotechnical properties. This study aims to assess the dominant weathering profileof the lower part of Kebo-Butak Formation as well as evaluating the distribution of the discontinuity. In order to know the dominant weathering profile and discontinuity evaluation, this study utilizes a total of  26 panels from five stations investigated through a geotechnical data acquisition including the geological condition, weathering zones, joint distribution, and discontinuity characteristics. The result shows four types of dominant weathering profiles in lower part of Kebo-Butak Formation called as dominant weathering profile A, B, C, and D. Profile A, B, C consisted of a relatively identical weathering degree pattern of fresh, slightly, moderately, completely weathered zone with the variation of thicknesses. However, the weathering degree in profile D reached the residual soil degree controlled by more intensive joints. The fine-grained sedimentary rocks also tends to have smaller spacing, shorter persistence, and higher weathering degree of discontinuities as compared to coarse-grained sedimentary rocks.


1968 ◽  
Vol 5 (3) ◽  
pp. 737-747 ◽  
Author(s):  
J. D. Obradovich ◽  
Z. E. Peterman

This paper presents new radiometric data that permit some qualified statements to be made on the depositional history of the Belt sedimentary rocks. The period of deposition of sedimentary rocks of the Precambrian Belt Series has been placed within a broad time interval, for they rest on metamorphosed basement rock dated at ~ 1800 m.y. and are overlain by the Middle Cambrian Flathead Quartzite (circa 530 m.y.). Prior geochronometric data gathered during the last decade indicate most of the Belt Series to be older than ~ 1100 m.y.K–Ar and Rb–Sr techniques have been applied recently to a variety of samples selected from the whole gamut of the Belt Series. Glauconite from various formations in the sequence McNamara Formation down to the uppermost beds of the Empire Formation in the Sun River area has been dated at 1080 ± 27 m.y. by the K–Ar method and at 1095 ± 22 m.y. by the Rb–Sr mineral isochron method. A Rb–Sr whole-rock isochron based on argillaceous sedimentary rocks from this 5000-ft section gives an age of 1100 ± 53 m.y. The concordance of the preceding results and the K–Ar ages (1075 to 1110 m.y.) on Purcell sills and lava imply that this age represents the time of sedimentation of these units.A Rb–Sr isochron based on whole-rock samples stratigraphically far below the Umpire Formation— the Greyson Shale, Newland Limestone, Chamberlain Shale, and Neihart Quartzite in the Big Belt and Little Beit Mountains—yields an age of 1325 ± 15 m.y. This result is interpreted as indicating a substantial unconformity beneath the Belt Series, at least in central Montana; it also suggests a major hiatus, unsuspected from field evidence, between the uppermost part of the Empire Formation and the Greyson Shale.The results for the youngest of Belt rocks—the Pilcher Quartzite and the Garnet Range Formation, which are exposed in the Alberton region—are equivocal in that there is widespread dispersion. A large component of detrital muscovite in some of the samples could readily account for the magnitude and sense of this dispersion. A maximum age of ~930 m.y. based on an isochron of minimum slope through the various points may be inferred for this sequence. A K–Ar age of 760 m.y. obtained on biotite from a sill in the Garnet Range Formation provides a minimum age for these younger Belt rocks.Three distinct periods of sedimentation for Belt rocks sampled are suggested at ≥ 1300, 1100, and ≤ 900 m.y., with two substantial hiatuses of 200 m.y. or more. In addition the data for the sequence in the Big and Little Belt Mountains suggest that sedimentation may not have commenced for a period of possibly 400 m.y. after the metamorphism that affected basement rocks, while the data for the Garnet Range and Pilcher sequence suggest that sedimentation ceased some 200 to 400 m.y. prior to the deposition of the Middle Cambrian Flathead Quartzite.To suggest that the Belt sediments were deposited continuously over a period of 400 m.y. or more would imply an unusually low average rate of deposition of ≤ 0.1 ft/1000 yr, and this for the thickest part of the Belt Series. As a realistic expression of the depositional history of the Belt Series, both viewpoints are open to question, but the viewpoint that the Belt basin has been characterized by discontinuous sedimentation would be more in keeping with the principle of uniformity.


1996 ◽  
Vol 33 (8) ◽  
pp. 1193-1200
Author(s):  
Pierre A. Cousineau ◽  
Robert Marquis

Structural analyses of folded volcano-sedimentary basins rely heavily on the identification and use of way-up structures. These structures are more numerous and widespread in sedimentary rocks than in volcanic rocks. Structural models for such basins can therefore be biased by this fact. The Caldwell Group of the Quebec Appalachians is a folded volcano-sedimentary basin bounded bay major faults. It contains locally abundant basalt-rich bands. Near Lac-Etchemin, way-up in basalt flows is determined by pillow shelves that reflect paleohorizontal planes. The strike and dip of these shelf structures were measured and plotted on stereographic projections. Field evidence and the interpretation of stereographic projections indicate that the basalt-rich bands form open folds that plunge gently to the southwest. However, sandstone-rich bands form tight folds with undulating hinge lines (sheath-like). During initial folding, the basalt formed competent bands with limited aerial extent that were fractured by synthetic and antithetic faults rather than folded. The basalt slivers maintained a near-horizontal attitude while adjacent sedimentary rocks were folded and faulted. Further shortening tightened folds in the sediment-rich bands while producing open folds in slivers of basaltic rocks.


Sign in / Sign up

Export Citation Format

Share Document