scholarly journals A second glimpse of Early Cambrian life: new collections from Sirius Passet, North Greenland

1992 ◽  
Vol 155 ◽  
pp. 48-50
Author(s):  
J.S Peel ◽  
S.C Morris ◽  
J.R Ineson

The German mining term lagerstatten, referring to a rock of any composition containing constituents of economic interest, has been widely applied to occurrences of abundant or unusually well preserved fossils (cf. Seilacher et al., 1985). The Middle Cambrian Burgess Shale of western Canada is perhaps the most famous of all fossil-lagerstatt, with many of the approximately 140 known species preserving exquisite details of the soft anatomy of members of a community of organisms that was fossilised more than 500 million years ago (Whittington, 1985: Conway Morris, 1979, 1986; Gould, 1989). Other well known examples include the Upper Cambrian 'Orsten' of southern Sweden, the Lower Devonian Hunsruck Slate and the Jurassic Solnhofen Limestone of Germany (Stürmer et al.. 1980; Muller, 1985; Barthel et al. 1990; summary in Briggs & Crowther, 1990, pp. 266–297). The term can be applied aptly to the Sirius Passet fauna of central North Greenland, where a wealth of exceptionally preserved fossils (e.g. Fig. 1) from tile Lower Cambrian Buen Formation has been recorded from a small locality in western Peary Land, near the south-western end of the broad valley known as Sirius Passet (Fig. 2). The locality yielding the Sirius

1988 ◽  
Vol 137 ◽  
pp. 54-54
Author(s):  
G Vidal ◽  
J.S Peel

Siliciclastic sediments of the Buen Formation of North Greenland yield the earliest Cambrian fossils known from North Greenland, with the exception of cyanobacteria described from dolomites of the underlying Portfjeld Formation (see Peel, this report). The fauna is dominated by olenellid and nevadiid trilobites indicating an Early Cambrian age (Poulsen, 1974; Blaker, this report) but hyolithids, bradoriids, sponges and other fossils also occur. Bergstrom & Peel (this report) described trace fossils from the Buen Formation. Of particular interest is the recent discovery of lightly skeletised arthropods comprising an assemblage similar to that of the Middle Cambrian Burgess shale of Canada (Conway Morris et al., 1987).


1995 ◽  
Vol 347 (1321) ◽  
pp. 305-358 ◽  

Articulated halkieriids of Halkieria evangelista sp. nov. are described from the Sirius Passet fauna in the Lower Cambrian Buen Formation of Peary Land, North Greenland. Three zones of sclerites are recognizable: obliquely inclined rows of dorsal palmates, quincuncially inserted lateral cultrates and imbricated bundles of ventro-lateral siculates. In addition there is a prominent shell at both ends, each with radial ornamentation. Both sclerites and shells were probably calcareous, but increase in body size led to insertion of additional sclerites but marginal accretion of the shells. The ventral sole was soft and, in life, presumably muscular. Recognizable features of internal anatomy include a gut trace and possible musculature, inferred from imprints on the interior of the anterior shell. Halkieriids are closely related to the Middle Cambrian Wixaxia , best known from the Burgess Shale: this clade appears to have played an important role in early protostome evolution. From an animal fairly closely related to Wixaxia arose the polychaete annelids; the bundles of siculate sclerites prefigure the neurochaetae whereas the dorsal notochaetae derive from the palmates. Wixaxia appears to have a relic shell and a similar structure in the sternaspid polychaetes may be an evolutionary remnant. The primitive state in extant polychaetes is best expressed in groups such as chrysopetalids, aphroditaceans and amphinomids. The homology between polychaete chaetae and the mantle setae of brachiopods is one line of evidence to suggest that the latter phylum arose from a juvenile halkieriid in which the posterior shell was first in juxtaposition to the anterior and rotated beneath it to provide the bivalved condition of an ancestral brachiopod. H. evangelista sp. nov. has shells which resemble those of a brachiopod; in particular the posterior one. From predecessors of the halkieriids known as siphogonuchitids it is possible that both chitons (polyplacophorans) and conchiferan molluscs arose. The hypothesis of halkieriids and their relatives having a key role in annelid—brachiopod—mollusc evolution is in accord with some earlier proposals and recent evidence from molecular biology. It casts doubt, however, on a number of favoured concepts including the primitive annelid being oligochaetoid and a burrower, the brachiopods being deuterostomes and the coelom being an archaic feature of metazoans. Rather, the annelid coelom arose as a functional consequence of the transition from a creeping halkieriid to a polychaete with stepping parapodial locomotion.


1979 ◽  
Vol 91 ◽  
pp. 29-36
Author(s):  
A.R Palmer ◽  
J.S Peel

Early, Middle and Late Cambrian faunas from Peary Land, eastern North Greenland, are briefly documented. The Early Cambrian faunas of the lower Brønlund Fjord Group are assigned to the Bonnia-Olenellus Zone, although olenellids from the underiying Buen Formation may be older. Strata from the upper Brønlund Fjord Group with Middle Cambrian faunas are seemingly separated from the Lower Cambrian by a discontinuity, without representation of early Middle Cambrian zones. Faunas from lower beds of the overlying Tavsens Iskappe Group span the Middle-Late Cambrian boundary. Upper beds ofthe Tavsens Iskappe Group are assigned to the Late Cambrian, but corroborative faunal evidence is not yet available.


Author(s):  
Jon R. Ineson ◽  
John S. Peel

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Ineson, J. R., & Peel, J. S. (1997). Cambrian shelf stratigraphy of North Greenland. Geology of Greenland Survey Bulletin, 173, 1-120. https://doi.org/10.34194/ggub.v173.5024 _______________ The Lower Palaeozoic Franklinian Basin is extensively exposed in northern Greenland and the Canadian Arctic Islands. For much of the early Palaeozoic, the basin consisted of a southern shelf, bordering the craton, and a northern deep-water trough; the boundary between the shelf and the trough shifted southwards with time. In North Greenland, the evolution of the shelf during the Cambrian is recorded by the Skagen Group, the Portfjeld and Buen Formations and the Brønlund Fjord, Tavsens Iskappe and Ryder Gletscher Groups; the lithostratigraphy of these last three groups forms the main focus of this paper. The Skagen Group, a mixed carbonate-siliciclastic shelf succession of earliest Cambrian age was deposited prior to the development of a deep-water trough. The succeeding Portfjeld Formation represents an extensive shallow-water carbonate platform that covered much of the shelf; marked differentiation of the shelf and trough occurred at this time. Following exposure and karstification of this platform, the shelf was progressively transgressed and the siliciclastics of the Buen Formation were deposited. From the late Early Cambrian to the Early Ordovician, the shelf showed a terraced profile, with a flat-topped shallow-water carbonate platform in the south passing northwards via a carbonate slope apron into a deeper-water outer shelf region. The evolution of this platform and outer shelf system is recorded by the Brønlund Fjord, Tavsens Iskappe and Ryder Gletscher Groups. The dolomites, limestones and subordinate siliciclastics of the Brønlund Fjord and Tavsens Iskappe Groups represent platform margin to deep outer shelf environments. These groups are recognised in three discrete outcrop belts - the southern, northern and eastern outcrop belts. In the southern outcrop belt, from Warming Land to south-east Peary Land, the Brønlund Fjord Group (Lower-Middle Cambrian) is subdivided into eight formations while the Tavsens Iskappe Group (Middle Cambrian - lowermost Ordovician) comprises six formations. In the northern outcrop belt, from northern Nyeboe Land to north-west Peary Land, the Brønlund Fjord Group consists of two formations both defined in the southern outcrop belt, whereas a single formation makes up the Tavsens Iskappe Group. In the eastern outcrop area, a highly faulted terrane in north-east Peary Land, a dolomite-sandstone succession is referred to two formations of the Brønlund Fjord Group. The Ryder Gletscher Group is a thick succession of shallow-water, platform interior carbonates and siliciclastics that extends throughout North Greenland and ranges in age from latest Early Cambrian to Middle Ordovician. The Cambrian portion of this group between Warming Land and south-west Peary Land is formally subdivided into four formations.The Lower Palaeozoic Franklinian Basin is extensively exposed in northern Greenland and the Canadian Arctic Islands. For much of the early Palaeozoic, the basin consisted of a southern shelf, bordering the craton, and a northern deep-water trough; the boundary between the shelf and the trough shifted southwards with time. In North Greenland, the evolution of the shelf during the Cambrian is recorded by the Skagen Group, the Portfjeld and Buen Formations and the Brønlund Fjord, Tavsens Iskappe and Ryder Gletscher Groups; the lithostratigraphy of these last three groups forms the main focus of this paper. The Skagen Group, a mixed carbonate-siliciclastic shelf succession of earliest Cambrian age was deposited prior to the development of a deep-water trough. The succeeding Portfjeld Formation represents an extensive shallow-water carbonate platform that covered much of the shelf; marked differentiation of the shelf and trough occurred at this time. Following exposure and karstification of this platform, the shelf was progressively transgressed and the siliciclastics of the Buen Formation were deposited. From the late Early Cambrian to the Early Ordovician, the shelf showed a terraced profile, with a flat-topped shallow-water carbonate platform in the south passing northwards via a carbonate slope apron into a deeper-water outer shelf region. The evolution of this platform and outer shelf system is recorded by the Brønlund Fjord, Tavsens Iskappe and Ryder Gletscher Groups. The dolomites, limestones and subordinate siliciclastics of the Brønlund Fjord and Tavsens Iskappe Groups represent platform margin to deep outer shelf environments. These groups are recognised in three discrete outcrop belts - the southern, northern and eastern outcrop belts. In the southern outcrop belt, from Warming Land to south-east Peary Land, the Brønlund Fjord Group (Lower-Middle Cambrian) is subdivided into eight formations while the Tavsens Iskappe Group (Middle Cambrian - lowermost Ordovician) comprises six formations. In the northern outcrop belt, from northern Nyeboe Land to north-west Peary Land, the Brønlund Fjord Group consists of two formations both defined in the southern outcrop belt, whereas a single formation makes up the Tavsens Iskappe Group. In the eastern outcrop area, a highly faulted terrane in north-east Peary Land, a dolomite-sandstone succession is referred to two formations of the Brønlund Fjord Group. The Ryder Gletscher Group is a thick succession of shallow-water, platform interior carbonates and siliciclastics that extends throughout North Greenland and ranges in age from latest Early Cambrian to Middle Ordovician. The Cambrian portion of this group between Warming Land and south-west Peary Land is formally subdivided into four formations.


2000 ◽  
Vol 74 (5) ◽  
pp. 858-878 ◽  
Author(s):  
Stephen R. Westrop ◽  
Ed Landing

The Hanford Brook Formation, one of the classic Cambrian units of Avalonian North America, contains at least eight species of endemic trilobites, including Berabichia milleri Westrop n. sp., that are assigned to seven genera. The vertical succession of faunas is far more complex than has been recognized previously, with each member containing a lithofacies-specific assemblage. These are, in ascending order: a bradoriid-linguloid Association without trilobites in the nearshore St. Martin's Member, a Protolenus Association in dysaerobic siltstones and sandstones of the Somerset Street Member, and a Kingaspidoides-Berabichia Association in hummocky cross-stratified sandstones of the Long Island Member that overlie a parasequence boundary at Hanford Brook. Due to the breakdown of biogeographic barriers in the late Early Cambrian, two new species-based zones, the Protolenus elegans and Kingaspidoides cf. obliquoculatus zones, share trilobite genera with the Tissafinian Stage of Morocco. This generic similarity has been the basis for correlation of this upper Lower Cambrian interval on the Avalon continent with the West Gondwanan lowest Middle Cambrian. However, the clear facies control on the occurrence of genera in the Hanford Brook Formation and the presence of an abrupt faunal break and unconformity at the base of the Tissafinian in Morocco makes this correlation questionable. The Hanford Brook Formation may represent a late Early Cambrian interval unknown in Gondwana. Sequence-stratigraphic criteria even raise the possibility that the Protolenus Association is the biofacies equivalent of Callavia broeggeri Zone faunas of the Brigus Formation of Newfoundland, Nova Scotia and Massachusetts.


1992 ◽  
Vol 6 ◽  
pp. 69-69
Author(s):  
Simon Conway Morris

Ediacaran taxa are a characteristic element of latest Precambrian biotas, with an effectively global distribution. Their time range is not well understood, but with one possible exception from western Canada Ediacaran faunas appear always to post-date the late Precambrian glaciations. There is also growing evidence that many Ediacaran taxa disappeared before the Precambrian-Cambrian boundary. These disappearances traditionally have been ascribed to changes in taphonomic circumstances, but a series of extinctions is a plausible alternative. Ediacaran fossils pose two major problems: Notwithstanding the reasons for their disappearance shortly before the Precambrian-Cambrian boundary, was their demise total or did some forms persist into the Cambrian? Second, is the traditional view that Ediacaran taxa are metazoans, many of a cnidarian grade, correct? Recently Seilacher, Bergström and others have argued that the Ediacaran organisms have a distinctive bauplan, difficult to reconcile with known phyla and possibly different from any metazoan.In the Cambrian, Burgess Shale-type faunas are the principal source of information on soft-bodied metazoans. The differences between them and Ediacaran assemblages are largely self-evident, but there is now unequivocal evidence for at least one Ediacaran survivor from the Middle Cambrian Burgess Shale of British Columbia. This is a sea-pen-like animal, known from three specimens (one adult about 20 cm in length, and two juveniles). The fossils consist of a broad frond, with branches arising from a central axis on one side, while the opposite side is smooth apart from longitudinal ridges. The frond extends into a blunt holdfast that presumably was embedded in the muddy silt of the sea floor. This fossil is strikingly similar to the Ediacaran taxon Charniodiscus, best known from South Australia. The Burgess Shale example shows two important features. The first are pustule-like structures, possibly zooids, both on the branches and adjacent to the axis. The second feature is evidence for connections between the branches and axis, possibly representing canals. These features both support a comparison with extant pennatulaceans, and suggest that at least some Ediacaran taxa are correctly assigned to the metazoans.Also occurring in the Burgess Shale is an enigmatic bag-like organism Mackenzia costalis. Clear evidence exists for it being benthic, but its mode of feeding is uncertain. The interior appears to have consisted largely of a spacious cavity, probably sub-divided by longitudinal partitions. In addition, an elongate strand may represent a discrete organ, perhaps connected with digestion or reproduction. No exact equivalent to Mackenzia appears to occur in Ediacaran assemblages, but bag-like taxa are a common component. These include erniettids, best known from Namibia, and Platypholina, from the White Sea region of Russia.


2018 ◽  
Vol 156 (1) ◽  
pp. 172-178 ◽  
Author(s):  
JULIEN KIMMIG ◽  
RONALD C. MEYER ◽  
BRUCE S. LIEBERMAN

AbstractThe Pioche Formation of SE Nevada preserves a diverse soft-bodied fauna from the early and middle Cambrian (Series 2–3: Stage 4–5). While the fauna is dominated by arthropods, animals belonging to other taxa can be found. Here we document the first occurrence of Herpetogaster collinsi outside the Burgess Shale. Further, the specimens are from the Nephrolenellus multinodus biozone and thus represent the oldest occurrence of the species, as well as possibly the earliest soft-bodied deuterostomes in Laurentia.


2019 ◽  
Vol 286 (1894) ◽  
pp. 20182505 ◽  
Author(s):  
Giannis Kesidis ◽  
Ben J. Slater ◽  
Sören Jensen ◽  
Graham E. Budd

The fossilized traces of burrowing worms have taken on a considerable importance in studies of the Cambrian explosion, partly because of their use in defining the base of the Cambrian. Foremost among these are the treptichnids, a group of relatively large open probing burrows that have sometimes been assigned to the activities of priapulid scalidophoran worms. Nevertheless, most Cambrian burrows have an uncertain progenitor. Here we report a suite of exceptionally preserved trace and body fossils from sandstones of the lower Cambrian (Stage 4) File Haidar Formation of southern Sweden that can unequivocally be assigned to a scalidophoran producer. We further present the first burrow casts produced via actualistic experiments on living priapulids, and demonstrate the remarkable morphological parallels between these modern and Cambrian fossil equivalents. In addition, co-occurrence of scalidophoran-derived cuticular remains permits a unique synthesis of evidence from trace fossil, body and organic remains. Comparative analysis of these exceptionally preserved fossils supports a scalidophoran producer for treptichnids and by extension suggests a latest Ediacaran origin of the ecdysozoan clade.


1996 ◽  
Vol 70 (2) ◽  
pp. 275-279 ◽  
Author(s):  
Xi-Guang Zhang ◽  
Brian R. Pratt

Phosphatized, three-dimensional cuticle fragments of the palaeoscolecids Houscolex lepidotus new genus and new species, Houscolex species indeterminate, and an unidentified form are described from the Lower Cambrian Qiongzhusi Formation of Shaanxi, China. These segmented worms, characterized by regularly arranged simple plates and platelets, small circular pores and fine pits, and irregularly distributed nipplelike protuberances, are unique among known palaeoscolecids. The occurrence of such cuticles as seemingly persistent elements of phosphatized faunas suggests that wormlike organisms achieved a fairly high diversity and widespread geographic distribution during the Early and Middle Cambrian.


2015 ◽  
Vol 11 (10) ◽  
pp. 20150763 ◽  
Author(s):  
Luke Parry ◽  
Jakob Vinther ◽  
Gregory D. Edgecombe

The oldest fossil annelids come from the Early Cambrian Sirius Passet and Guanshan biotas and Middle Cambrian Burgess Shale. While these are among the best preserved polychaete fossils, their relationship to living taxa is contentious, having been interpreted either as members of extant clades or as a grade outside the crown group. New morphological observations from five Cambrian species include the oldest polychaete with head appendages, a new specimen of Pygocirrus from Sirius Passet, and an undescribed form from the Burgess Shale. We propose that the palps of Canadia are on an anterior segment bearing neuropodia and that the head of Phragmochaeta is formed of a segment bearing biramous parapodia and chaetae. The unusual anatomy of these taxa suggests that the head is not differentiated into a prostomium and peristomium, that palps are derived from a modified parapodium and that the annelid head was originally a parapodium-bearing segment. Canadia , Phragmochaeta and the Marble Canyon annelid share the presence of protective notochaetae, interpreted as a primitive character state subsequently lost in Pygocirrus and Burgessochaeta , in which the head is clearly differentiated from the trunk.


Sign in / Sign up

Export Citation Format

Share Document