scholarly journals ESTIMATING THE VELOCITY DISTRIBUTION IN VISCOUS INCOMPRESSIBLE FLOW (COUETTE FLOW) BETWEEN TWO PARALLEL PLATES USING TRI -DIAGONAL MATRIX ALGORITHM

Author(s):  
Rakesh Sudarsi
1950 ◽  
Vol 17 (2) ◽  
pp. 154-158
Author(s):  
Phillip Eisenberg

Abstract Using the method of successive images, an approximate solution for the velocity potential is obtained in closed form for incompressible flow about an ovary ellipsoid near a plane wall. The velocity distribution is computed from this solution in two ways. The first computation properly predicts differences in velocities on opposite half-meridians of the ellipsoid. A second method results in a symmetric velocity distribution but is useful for rapid estimates of the average wall effect. Pressure distributions calculated by this theory are compared with values measured on 4:1 and 6:1 ellipsoid models.


Author(s):  
Ahmada Omar Ali ◽  
Oluwole Daniel Makinde ◽  
Yaw Nkansah-Gyekye

Purpose – The purpose of this paper is to investigate numerically the unsteady MHD Couette flow and heat transfer of viscous, incompressible and electrically conducting nanofluids between two parallel plates in a rotating channel. Design/methodology/approach – The nanofluid is set in motion by the combined action of moving upper plate, Coriolis force and the constant pressure gradient. The channel rotates in unison about an axis normal to the plates. The nonlinear governing equations for velocity and heat transfer are obtained and solved numerically using semi-discretization, shooting and collocation (bvp4c) techniques together with Runge-Kutta Fehlberg integration scheme. Findings – Results show that both magnetic field and rotation rate demonstrate significant effect on velocity and heat transfer profiles in the system with Cu-water nanofluid demonstrating the highest velocity and heat transfer efficiency. These numerical results are in excellent agreements with the results obtained by other methods. Practical implications – This paper provides a very useful source of information for researchers on the subject of hydromagnetic nanofluid flow in rotating systems. Originality/value – Couette flow of nanofluid in the presence of applied magnetic field in a rotating channel is investigated.


2010 ◽  
Author(s):  
Tomáš Neustupa ◽  
Theodore E. Simos ◽  
George Psihoyios ◽  
Ch. Tsitouras

1953 ◽  
Vol 20 (1) ◽  
pp. 109-114
Author(s):  
S. I. Pai

Abstract The Reynolds equations of motion of turbulent flow of incompressible fluid have been studied for turbulent flow between parallel plates. The number of these equations is finally reduced to two. One of these consists of mean velocity and correlation between transverse and longitudinal turbulent-velocity fluctuations u 1 ′ u 2 ′ ¯ only. The other consists of the mean pressure and transverse turbulent-velocity intensity. Some conclusions about the mean pressure distribution and turbulent fluctuations are drawn. These equations are applied to two special cases: One is Poiseuille flow in which both plates are at rest and the other is Couette flow in which one plate is at rest and the other is moving with constant velocity. The mean velocity distribution and the correlation u 1 ′ u 2 ′ ¯ can be expressed in a form of polynomial of the co-ordinate in the direction perpendicular to the plates, with the ratio of shearing stress on the plate to that of the corresponding laminar flow of the same maximum velocity as a parameter. These expressions hold true all the way across the plates, i.e., both the turbulent region and viscous layer including the laminar sublayer. These expressions for Poiseuille flow have been checked with experimental data of Laufer fairly well. It also shows that the logarithmic mean velocity distribution is not a rigorous solution of Reynolds equations.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 932
Author(s):  
Rodrigo González ◽  
Aldo Tamburrino ◽  
Andrea Vacca ◽  
Michele Iervolino

The flow between two parallel plates driven by a pulsatile pressure gradient was studied analytically with a second-order velocity expansion. The resulting velocity distribution was compared with a numerical solution of the momentum equation to validate the analytical solution, with excellent agreement between the two approaches. From the velocity distribution, the analytical computation of the discharge, wall shear stress, discharge, and dispersion enhancements were also computed. The influence on the solution of the dimensionless governing parameters and of the value of the rheological index was discussed.


Sign in / Sign up

Export Citation Format

Share Document