scholarly journals A New Approach to Solving the Problem of Generating Sets of Complex Structural Objects Based on a Quasi-Equivalent Transformation of a Labeling Scheme

Author(s):  
Igor Tkachov

The paper presents the results of a theoretical study related to the development of methods for constructing generating structures based on labeling schemes for generating sets of complex structural objects. In a theoretical aspect, generated objects are mappings of sets of objects into a set of labels, and in practical terms, they can be, in particular, visual images. The scientific and practical interest in generative constructions is that they can be used to determine whether objects belong to a certain class, that is, to solve the problem of pattern recognition. The problem of constructing generating labeling scheme belongs to a wide section of modern applied informatics that embraces Constraint Satisfaction Problem and related themes [1–4]. But this problem has not been posed before and there are still no regular methods for solving it. The analysis of the above methods is based on the formalism of the consistent labeling problem [6, 10, 11], which is, on the one hand, a generalization of many statements of discrete problems of Constraint Satisfaction, and, on the other hand, a transparent theoretical construction with a well-developed mathematical foundation. The problem of constructing a relational scheme (in this case, labeling scheme) that generates a given set of mappings, by analogy with linguistic models, may be named “the problem of grammar restoration” [12–14]. In previous studies it was shown that to solve this problem it makes sense to use equivalent transformations of the labeling scheme [11]. This is because the source table listing all the complex objects that should be generated by the target scheme is itself a trivial variant of the scheme with a given set of consistent labelings. This means that the source scheme and target scheme are equivalent. However, one of the equivalent operations – disunion of a column – cannot be used regularly, since it requires certain conditions to be met regarding the internal structure of the column. In this case, to expand the capabilities of four known equivalent transformations of the labeling scheme – deleting and appending nonexistent labeling, as well as joining of columns and column disunion – a non-equivalent transformation was added – "coloring the column labelings". The purpose of the paper is to introduce and investigate operation of "coloring the column labelings" that leads to a non-equivalent transformation of a labeling scheme. Show the advisability of using the known equivalent and the introduced quasi-equivalent transformations of the labeling scheme to solve the problem of constructing generating structures based on labeling schemes. Results. The transformation of the labeling scheme, called "coloring the labelings of the scheme column", has been introduced. It is shown that its implementation leads to a quasi-equivalent labeling scheme, by solving which it is possible to uniquely restore the solution of the original problem. A method is proposed for using the newly introduced operation to transform the labeling scheme into a quasi-equivalent labeling scheme, in which it becomes possible to regularly perform the column decoupling operation. This ability of the operation of "coloring the column labelings" opens the way to the creation of a method for solving the problem of restoring a labeling scheme that generates a given set of consistent labelings. Keywords: relational scheme, consistent labeling scheme, equivalent labeling scheme transformations, constraint satisfaction problem.

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
N. Bouhmala

The constraint satisfaction problem (CSP) is a popular used paradigm to model a wide spectrum of optimization problems in artificial intelligence. This paper presents a fast metaheuristic for solving binary constraint satisfaction problems. The method can be classified as a variable depth search metaheuristic combining a greedy local search using a self-adaptive weighting strategy on the constraint weights. Several metaheuristics have been developed in the past using various penalty weight mechanisms on the constraints. What distinguishes the proposed metaheuristic from those developed in the past is the update ofkvariables during each iteration when moving from one assignment of values to another. The benchmark is based on hard random constraint satisfaction problems enjoying several features that make them of a great theoretical and practical interest. The results show that the proposed metaheuristic is capable of solving hard unsolved problems that still remain a challenge for both complete and incomplete methods. In addition, the proposed metaheuristic is remarkably faster than all existing solvers when tested on previously solved instances. Finally, its distinctive feature contrary to other metaheuristics is the absence of parameter tuning making it highly suitable in practical scenarios.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Manuel Bodirsky ◽  
Bertalan Bodor

Abstract Let K exp + \mathcal{K}_{{\operatorname{exp}}{+}} be the class of all structures 𝔄 such that the automorphism group of 𝔄 has at most c ⁢ n d ⁢ n cn^{dn} orbits in its componentwise action on the set of 𝑛-tuples with pairwise distinct entries, for some constants c , d c,d with d < 1 d<1 . We show that K exp + \mathcal{K}_{{\operatorname{exp}}{+}} is precisely the class of finite covers of first-order reducts of unary structures, and also that K exp + \mathcal{K}_{{\operatorname{exp}}{+}} is precisely the class of first-order reducts of finite covers of unary structures. It follows that the class of first-order reducts of finite covers of unary structures is closed under taking model companions and model-complete cores, which is an important property when studying the constraint satisfaction problem for structures from K exp + \mathcal{K}_{{\operatorname{exp}}{+}} . We also show that Thomas’ conjecture holds for K exp + \mathcal{K}_{{\operatorname{exp}}{+}} : all structures in K exp + \mathcal{K}_{{\operatorname{exp}}{+}} have finitely many first-order reducts up to first-order interdefinability.


Author(s):  
Robert Ganian ◽  
Andre Schidler ◽  
Manuel Sorge ◽  
Stefan Szeider

Treewidth and hypertree width have proven to be highly successful structural parameters in the context of the Constraint Satisfaction Problem (CSP). When either of these parameters is bounded by a constant, then CSP becomes solvable in polynomial time. However, here the order of the polynomial in the running time depends on the width, and this is known to be unavoidable; therefore, the problem is not fixed-parameter tractable parameterized by either of these width measures. Here we introduce an enhancement of tree and hypertree width through a novel notion of thresholds, allowing the associated decompositions to take into account information about the computational costs associated with solving the given CSP instance. Aside from introducing these notions, we obtain efficient theoretical as well as empirical algorithms for computing threshold treewidth and hypertree width and show that these parameters give rise to fixed-parameter algorithms for CSP as well as other, more general problems. We complement our theoretical results with experimental evaluations in terms of heuristics as well as exact methods based on SAT/SMT encodings.


Sign in / Sign up

Export Citation Format

Share Document