scholarly journals Cardiopulmonary Exercise Test in heart failure: A Sine qua non

2020 ◽  
Vol 9 (2) ◽  
pp. 1-8 ◽  
Author(s):  
Stefanos Sakellaropoulos ◽  
Dimitra Lekaditi ◽  
Stefano Svab

A robust literature, over the last years, supports the indication of cardiopulmonary exercise testing (CPET) in patients with cardiovascular diseases. Understanding exercise physiology is a crucial component of the critical evaluation of exercise intolerance. Shortness of breath and exercise limitation is often treated with an improper focus, partly because the pathophysiology is not well understood in the frame of the diagnostic spectrum of each subspecialty. A vital field and research area have been cardiopulmonary exercise test in heart failure with preserved/reduced ejection fraction, evaluation of heart failure patients as candidates for LVAD-Implantation, as well as for LVAD-Explantation and ultimately for heart transplantation. All the CPET variables provide synergistic prognostic discrimination. However, Peak VO2 serves as the most critical parameter for risk stratification and prediction of survival rate.

2020 ◽  
Vol 27 (2_suppl) ◽  
pp. 59-64
Author(s):  
Damiano Magrì ◽  
Giovanna Gallo ◽  
Gianfranco Parati ◽  
Mariantonietta Cicoira ◽  
Michele Senni

Heart failure with mid-range ejection fraction represents a heterogeneous and relatively young heart failure category accounting for nearly 20–30% of the overall heart failure population. Due to its complex phenotype, a reliable clinical picture of heart failure with mid-range ejection fraction patients as well as a definite risk stratification are still relevant unsolved issues. In such a context, there is growing interest in a comprehensive functional assessment by means of a cardiopulmonary exercise test, yet considered a cornerstone in the clinical management of patients with heart failure and reduced ejection fraction. Indeed, the cardiopulmonary exercise test has also been found to be particularly useful in the heart failure with mid-range ejection fraction category, several cardiopulmonary exercise test-derived parameters being associated with a poor outcome. In particular, a recent contribution by the metabolic exercise combined with cardiac and kidney indexes research group showed an independent association between the peak oxygen uptake and pure cardiovascular mortality in a large cohort of recovered heart failure with mid-range ejection fraction patients. Contextually, the same study supplied an easy approach to identify a high-risk heart failure with mid-range ejection fraction subset by using a combination of peak oxygen uptake and ventilatory efficiency cut-off values, namely 55% of the maximum predicted and 31, respectively. Thus, looking at the above-mentioned promising results and waiting for specific trials, it is reasonable to consider cardiopulmonary exercise test assessment as part of the heart failure with mid-range ejection fraction work-up in order to identify those patients with an unfavourable functional profile who probably deserve a close clinical follow-up and, probably, more aggressive therapeutic strategies.


2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
J.P.L De Almeida ◽  
J Milner ◽  
J Rosa ◽  
R Coutinho ◽  
M Ferreira ◽  
...  

Abstract Background Compared with the cardiac exercise stress test, more commonly used to assess the presence of ischemia, the cardiopulmonary exercise test has the advantage of providing expired gas analysis. According to current guidelines, cardiopulmonary exercise testing should be considered to stratify the risk of adverse events and to provide measures of survival improvement in heart failure populations. However, cardiac exercise stress test is more readily available and widespread than cardiopulmonary exercise testing. We aimed to compare prognostic information given by estimated pVO2 – which can be obtained from cardiac exercise stress test – and real measured pVO2 – which requires cardiopulmonary exercise test – in a heart failure population. Methods We conducted a retrospective analysis of 214 patients with HF underwent cardiac exercise stress test and accessed their 5 year survival. Non-urgent transplanted (UNOS Status 2) patients were censored alive on the date of the transplant. Duringthe cardiopulmonary exercise test, cardiac exercise stress test data simultaneously collected. Based on protocol stage achieved, estimated METs were used to calculate estimated pVO2 (pVO2 = estimated METs x 3.5). Estimated and real pVO2 were correlated using Pearson correlation and the age-adjusted prognostic power of each was determined using Cox proportional hazardsanalysis. Results 164 patients were male (77%) and the mean age of the population was 56±10 years. 78 (36%) patients had an ischemic etiology. Within 5 years from testing, 46 patients died (21.5%) and 55 patients (26%) were transplanted. Naughton modified (n=165) was the most commonly used protocol, followed by Naughton (n=39) and Bruce (n=10). Estimated pVO2 and measured pVO2 correlated significantly (R=0.66, p<0.01) (Figure 1). Both estimated (HR=0.91, 95% CI 0.86–0.95, p<0.01) and measured pVO2 (HR=0.86, 95% CI 0.80–0.91, p<0.01) strongly predicted prognosis in this population. Conclusions Estimated pVO2 correlated with measured pVO2 and strongly predicted prognosis in this heart failure population. Because it can be obtained from conventional cardiac exercise testing, it may become an alternative prognostic tool to cardiopulmonary testing. FUNDunding Acknowledgement Type of funding sources: None. Figure 1. Measured vs estimated pVO2


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
T Chwyczko ◽  
L Zalucka ◽  
E Smolis-Bak ◽  
I Kowalik ◽  
E Noszczak ◽  
...  

Abstract Background Rehabilitation after LVAD implantation is increasingly used. We developed the novel method of comprehensive rehabilitation starting directly after LVAD implantation. Study group 21 recent LVAD (15 Heart Mate III, 6 HeartWare) recipients (56.2±11.7 yrs, 100% men) were included to 5-week rehabilitation program, which included supervised endurance training on cycloergometer (5 times per week), resistance training, general fitness exercises with elements of equivalent and coordination exercises (every day). 6-minute walking test (6MWT), cardiopulmonary exercise test (CPET) and prognostic biomarkers: NT-proBNP, Galectin-3 and ST2 were investigated at the beginning and at the end of rehabilitation program. Results See Table 1. At the end of rehabilitation program, significant increase in 6MWT distance, maximum workload, peak VO2 and upward shift of anaerobic threshold in CPET were observed in all patients. Significant reductions of NTproBNP, ST2 and galectin-3 levels were observed. There were no major adverse events during rehabilitaton. Conclusions Comprehensive novel rehabilitation in LVAD recipients is safe and results in significant improvement of 6-minutes walking test distance and cardiopulmonary exercise test results. Moreover, this novel rehabilitation program reduces levels of prognostic biomarkers of heart failure: NT-proBNP, Galectin-3 and ST2. Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): National Center for Research and Development - STRATEGMED II project


2007 ◽  
Vol 8 (8) ◽  
pp. 608-612 ◽  
Author(s):  
Angela Beatrice Scardovi ◽  
Claudio Coletta ◽  
Renata De Maria ◽  
Silvia Perna ◽  
Nadia Aspromonte ◽  
...  

2013 ◽  
Vol 6 (2) ◽  
pp. 211-218 ◽  
Author(s):  
Jonathan Myers ◽  
Ricardo Oliveira ◽  
Frederick Dewey ◽  
Ross Arena ◽  
Marco Guazzi ◽  
...  

2017 ◽  
Author(s):  
Mary N. Woessner ◽  
Itamar Levinger ◽  
Christopher Neil ◽  
Cassandra Smith ◽  
Jason D Allen

BACKGROUND Chronic heart failure is characterized by an inability of the heart to pump enough blood to meet the demands of the body, resulting in the hallmark symptom of exercise intolerance. Chronic underperfusion of the peripheral tissues and impaired nitric oxide bioavailability have been implicated as contributors to the decrease in exercise capacity in these patients. nitric oxide bioavailability has been identified as an important mediator of exercise tolerance in healthy individuals, but there are limited studies examining the effects in patients with chronic heart failure. OBJECTIVE The proposed trial is designed to determine the effects of chronic inorganic nitrate supplementation on exercise tolerance in both patients with heart failure preserved ejection fraction (HFpEF) and heart failure reduced ejection fraction (HFrEF) and to determine whether there are any differential responses between the 2 cohorts. A secondary objective is to provide mechanistic insights into the 2 heart failure groups’ exercise responses to the nitrate supplementation. METHODS Patients with chronic heart failure (15=HFpEF and 15=HFrEF) aged 40 to 85 years will be recruited. Following an initial screen cardiopulmonary exercise test, participants will be randomly allocated in a double-blind fashion to consume either a nitrate-rich beetroot juice (16 mmol nitrate/day) or a nitrate-depleted placebo (for 5 days). Participants will continue daily dosing until the completion of the 4 testing visits (maximal cardiopulmonary exercise test, submaximal exercise test with echocardiography, vascular function assessment, and vastus lateralis muscle biopsy). There will then be a 2-week washout period after which the participants will cross over to the other treatment and complete the same 4 testing visits. RESULTS This study is funded by National Heart Foundation of Australia and Victoria University. Enrolment has commenced and the data collection is expected to be completed in mid 2018. The initial results are expected to be submitted for publication by the end of 2018. CONCLUSIONS If inorganic nitrate supplementation can improve exercise tolerance in patients with chronic heart failure, it has the potential to aid in further refining the treatment of patients in this population. CLINICALTRIAL Australian New Zealand Clinical Trials Registry ACTRN12615000906550; https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=368912 (Archived by WebCite at http://www.webcitation.org/6xymLMiFK)


Sign in / Sign up

Export Citation Format

Share Document