Experimental studies on Diesel Engine using Aluminium Nano Particles as Additives

Author(s):  
S.N. Shreenivasan ◽  
C. Chinnasamy

In this study an experimental investigation has been carried out on diesel engine to understand the engine behaviour with respect to its performance and emission characteristics while using Aluminium oxide (Al2O3) Nano particle as additive with a blend of diesel and biodiesel sourced from Waste Plastic Oil (WPO). The Alumina Nano particles are characterized by X- ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) analysis, UV-Vis Spectroscopy and Zeta Potential Analysis. The alumina Nano particles are blended with Waste Plastic Oil in the mass fractions of 10 and 20 ppm using an Ultrasonicator. The experiments are carried out in single cylinder four stroke Variable Compression Ratio diesel engine by varying the load using eddy current dynamometer. The experimental results reveal that there is a significant improvement in the performance characteristics like Brake Thermal Efficiency and Brake Specific Fuel Consumption and considerable reduction in the emission constituents like carbon Monoxide (CO) and Unburned Hydrocarbon (HC) and smoke but in turn increase in Nitric oxide (NOx) emissions were observed.

Author(s):  
Balaji Selvaraj ◽  
Prabhu Subramaniam ◽  
Chinnasamy Chenniyapan ◽  
Prakash Thangavel

In this study an experimental investigation has been carried out on compression ignition engine to understand the engine behaviour like its performance and emission characteristics while using Aluminium oxide (Al2O3) nano particle as additive with a blend of diesel and biodiesel sourced from Jatropha and Pongamia vegetable oil. The Alumina nano particles are characterized by X- ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analysis. The biodiesel is made engine ready with adoptable properties by carrying out standard alkali transesterification process. The alumina nano particles are blended with jatropha in the mass fractions of 50, 100, 150 ppm and with Pongamia biodiesel in the mass fractions of 40, 60 ppm using an ultrasonicator. The experiments are carried out in single cylinder four stroke variable compression ratio diesel engine by varying the load using eddy current dynamometer. The experimental results reveal that there is a significant improvement in the performance characteristics like brake thermal efficiency (BTHE) and brake specific fuel consumption (BSFC) and reduction in the emission constituents like carbon monoxide (CO) and unburned hydrocarbon (HC) but in turn increase in nitric oxide (NOx) emissions were observed.


2020 ◽  
Author(s):  
S. P. Venkatesan ◽  
J. Jeya Jeevahan ◽  
J. Hemanandh ◽  
S. Ganesan ◽  
R. Rajakavieswaran ◽  
...  

2020 ◽  
Author(s):  
Radha Krishna Gopidesi ◽  
Gopi Krishna Reddy Kakunuri ◽  
J. Yaswanth Manideep ◽  
ChPavan Kalyan ◽  
Rajavarapu Rambabu

2018 ◽  
Vol 34 (6) ◽  
pp. 2806-2813
Author(s):  
Pappula Bridjesh ◽  
Pitchaipillai Periyasamy ◽  
Narayanan Kannaiyan Geetha

This experimental investigation is an endeavour to substitute diesel with WPO as fuel on a diesel engine. Enhancing the physiochemical properties of WPO or with hardware modifications on the engine, the performance of engine could not be improved up to the mark. The physiochemical properties of WPO are enhanced by the use of composite additive, which is a mixture of soy lecithin and 2-ethylhexyl nitrate and to improve the in-cylinder air motion; subsequently to increase the swirl and turbulence, standard hemispherical combustion chamber is modified to toroidal spherical grooves combustion chamber. The results of combined effect of modifying the combustion chamber and addition of composite additive suggest that improvements in engine-out emissions can be obtained from current diesel engines by enhancing physiochemical properties of fuel and matching geometry of combustion chamber. Engine combustion and emission characteristics under various loads for various fuels under test are as well studied.


Sign in / Sign up

Export Citation Format

Share Document