scholarly journals Intelligent Multi-coloured Lighting System Design with Fuzzy Logic Controller

2020 ◽  
Vol 1 (3) ◽  
pp. 128-140
Author(s):  
Paul W. Mutua ◽  
Mwangi Mbuthia

This paper describes the design of an intelligent energy efficient lighting system that uses multi-colouredLEDs and a fuzzy logic controller to produce light of the required luminance level and colour in a typical roomspace. The lighting system incorporates automatic control of a room’s window shade opening, convenientlyharvesting daylight. Appropriate room occupancy sensors were set to dim off the LEDs if there are no people in theroom. A movement sensor was also considered for dimming the LEDs if the persons in the room are asleep. A colourdecoder was included in the control system, to determine the LEDs’ output light colour and dim them off if the colourrequirement is not selected. The colour decoder also closes the window shade if required light colour is not white.Two Fuzzy Logic controllers were used in the system; one to control opening of the room’s window shade viamicrocontroller, and the other to control the LEDs’ output luminance. The study was limited to simulation of thedesign in a MATLAB software environment using Fuzzy Logic Toolbox and Simulink blocks. The simulation testresults confirmed that the LEDs’ output luminance decreases as the amount of daylight entering the room increases.The designed system intelligently saves lighting electrical energy while maintaining the room’s comfortableillumination levels and colour requirements.

Author(s):  
Paul W. Mutua ◽  
Mwangi Mbuthia

This paper describes the design of an intelligent energy efficient lighting system that uses multi-coloured LEDs and a fuzzy logic controller to produce light of the required luminance level and colour in a typical room space. The lighting system incorporates automatic control of a room’s window shade opening, conveniently harvesting daylight. Appropriate room occupancy sensors were set to dim off the LEDs if there are no people in the room. A movement sensor was also considered for dimming the LEDs if the persons in the room are asleep. A colour decoder was included in the control system, to determine the LEDs’ output light colour and dim them off if the colour requirement is not selected. The colour decoder also closes the window shade if required light colour is not white. Two Fuzzy Logic controllers were used in the system; one to control opening of the room’s window shade via microcontroller, and the other to control the LEDs’ output luminance. The study was limited to simulation of the design in a MATLAB software environment using Fuzzy Logic Toolbox and Simulink blocks. The simulation test results confirmed that the LEDs’ output luminance decreases as the amount of daylight entering the room increases. The designed system intelligently saves lighting electrical energy while maintaining the room’s comfortable illumination levels and colour requirements.


2000 ◽  
Author(s):  
Linda Z. Shi ◽  
Mohamed B. Trabia

Abstract Fuzzy logic control presents a computationally efficient and robust alternative to conventional controllers. An expert in a particular system can usually design a fuzzy logic controller for it easily as can be seen in many applications where fuzzy logic has been already successfully implemented. On the other hand, fuzzy logic controllers are not readily available for flexible-link manipulators. This paper presents two different approaches to design distributed controllers for flexible-link manipulators. The first approach, which is based on observing the performance of flexible manipulators, uses a distributed controller composed of two PD-like fuzzy logic controllers; one controller controls the joint angle while the other controls the tip vibration. The second distributed controller is based on evaluating the importance of the parameters of the system. The most two important parameters, joint and tip point velocities, are grouped together in the same fuzzy logic controller. The other parameters, joint angle and tip point displacement, are used in the second fuzzy logic controller. Both approaches are tuned using nonlinear programming. The paper compares these two approaches with tracking using a linear Quadratic Regulator (LQR).


2015 ◽  
Vol 7 (3) ◽  
pp. 317-322
Author(s):  
Dominykas Beištaras

This paper presents liquid level control system model and analysis of dynamic characteristics. The system consists of scalar controlled induction motor drive, fuzzy logic controller, water tank and centrifugal pump. Simulink models of water tank, pump and controller are presented. The simulation of the system shows that the use of fuzzy logic controller reduces valve opening time and reservoir filling time. Nagrinėjamas skysčio lygio valdymo sistemos imitacinių modelių sudarymas, analizuojamos dinaminės charakteristikos. Valdymo sistema sudaryta iš skaliariniu būdu valdomos dažninės elektros pavaros su neraiškiosios logikos reguliatoriumi, vandens rezervuaro ir išcentrinio siurblio. Sudaryti rezervuaro, siurblio ir reguliatoriaus Simulink modeliai. Atlikus imitacijas gauta nedimensinė siurblio charakteristika, apibūdinanti siurblio veikimą, esant bet kokiam sukimosi greičiui. Nustatyta, kad sistemoje su neraiškiosios logikos reguliatoriumi vožtuvas yra atidaromas greičiau nei sistemoje su proporcinguoju integraliniu (PI) reguliatoriumi, ir todėl sumažinama rezervuaro pripildymo trukmė.


Jurnal Teknik ◽  
2020 ◽  
Vol 9 (2) ◽  
Author(s):  
Sumardi Sadi

DC motors are included in the category of motor types that are most widely used both in industrial environments, household appliances to children's toys. The development of control technology has also made many advances from conventional control to automatic control to intelligent control. Fuzzy logic is used as a control system, because this control process is relatively easy and flexible to design without involving complex mathematical models of the system to be controlled. The purpose of this research is to study and apply the fuzzy mamdani logic method to the Arduino uno microcontroller, to control the speed of a DC motor and to control the speed of the fan. The research method used is an experimental method. Global testing is divided into three, namely sensor testing, Pulse Width Modulation (PWM) testing and Mamdani fuzzy logic control testing. The fuzzy controller output is a control command given to the DC motor. In this DC motor control system using the Mamdani method and the control system is designed using two inputs in the form of Error and Delta Error. The two inputs will be processed by the fuzzy logic controller (FLC) to get the output value in the form of a PWM signal to control the DC motor. The results of this study indicate that the fuzzy logic control system with the Arduino uno microcontroller can control the rotational speed of the DC motor as desired.


Author(s):  
Mohamed B. Trabia ◽  
Woosoon Yim ◽  
Paul Weinacht ◽  
Venkat Mudupu

The objective of this paper is to explore a method for the design of fuzzy logic controller for a smart fin used to control the pitch and yaw attitudes of a subsonic projectile during flight. Piezoelectric actuators are an attractive alternative to hydraulic actuators commonly used in this application due to their simplicity. The proposed cantilever-shaped actuator can be fully enclosed within the hollow fin with one end fixed to the rotation axle of the fin while the other end is pinned at the trailing edge of the fin. The paper includes a dynamic model of the system based on the finite element approach. The model includes external moment due to aerodynamic effects. This paper presents a novel approach for automatically creating fuzzy logic controllers for the fin. This approach uses the inverse dynamics of the smart fin system to determine the ranges of the variables of the controllers. Simulation results show that the proposed controller can successfully drive smart fin under various operating conditions.


2018 ◽  
Vol 248 ◽  
pp. 02005
Author(s):  
Dirman Hanafi ◽  
Mohamed Najib Ribuan ◽  
Wan HamidahWan Abas ◽  
Hidayat ◽  
Elmy Johana ◽  
...  

This paper presents the online control system application for improving the DC motor performance. DC motor widely used in industries and many appliances. For this aim fuzzy logic controller is applied. The type of fuzzy controller use is an incremental fuzzy logic controller (IFLC). The IFLC is developed by using MATLAB Simulink Software and implemented in online position control system applying RAPCON board as a platform. The experimental results produced the best gains of the IFLC are 1.785, 0.0056955 and 0.01 for error gain (GE), gain of change error (GCE) and gain of output (GCU) respectively. Its produce smaller rise time, peak time, 0% overshoot and smaller settling time. Beside that the IFLC response also able to follow the set point. The controller response parameters values are also acceptable. It means that the IFLC suitable to be use for improving the position control system performance.


Sign in / Sign up

Export Citation Format

Share Document