A Study on the Safety Improvement Plan for Offshore Wind Industry Worker: Focused on Introduction of Safety Training

2020 ◽  
Vol 23 ◽  
pp. 363-387
Author(s):  
Jun-Hyuk Lee ◽  
Moon-Gyo Cho ◽  
Yong-Tae Kim ◽  
Jin-Woo Lee
2016 ◽  
Author(s):  
Patrick Gilman ◽  
Ben Maurer ◽  
Luke Feinberg ◽  
Alana Duerr ◽  
Lauren Peterson ◽  
...  

Author(s):  
William M West ◽  
Andrew J. Goupee ◽  
Christopher Allen ◽  
Anthony M. Viselli

Abstract As the Floating Offshore Wind industry matures it has become increasingly important for researchers to determine the next generation materials and processes that will allow platforms to be deployed in intermediate (50-85 m) water depths which challenge the efficiency of traditional catenary chain mooring systems and fixed-bottom jacket structures. One such technology, synthetic ropes, have in recent years come to the forefront of this effort. The challenge of designing synthetic rope moorings is the complex nonlinear tension-strain response inherent of some rope material choices. Currently, many numerical tools for modeling the dynamic behavior of FOWTs are limited to mooring materials that have a linear tension- strain response. In this paper an open source FOWT design and analysis program, OpenFAST, was modified to capture the more complex tension-strain responses of synthetic ropes. Simulations from the modified OpenFAST tool were then compared with 1:52-scale test data for a 6MW FOWT Semi- submersible platform in 55m of water subjected to representative design load cases. A strong correlation between the simulations and test data was observed.


Author(s):  
Marcial Velasco Garrido ◽  
Janika Mette ◽  
Stefanie Mache ◽  
Volker Harth ◽  
Alexandra M. Preisser

Author(s):  
Benjamin H. Cottrell ◽  
In-Kyu Lim

This paper discusses the process used to develop a safety improvement plan for unsignalized intersections using systemic low-cost countermeasures. The scope of this project focused on unsignalized intersections with stop sign control on the minor approaches. The first objective was to perform an assessment of Virginia’s unsignalized intersection crashes over a five-year period to determine predominant crash trends and collision types to target for treatment. The four focus collision types with the highest frequency of crashes and the greatest potential reduction in crashes were 3-leg angle, 3-leg fixed object off the road, 4-leg angle and 4-leg rear end. Chi-square automatic interaction detection decision tree analysis was used to perform a systemic analysis to identify a group of intersections associated with potential risk factors related to the focus collision types. A tiered list of systemic countermeasures to deploy was developed. The countermeasures were intended to warn of the stop ahead, make the stop sign and stop location more visible on a minor street, and to warn of the intersection ahead on a major street. The potential for safety improvement measure was used to prioritize the candidate treatment intersections. Before deployment, a study of the intersection by district traffic engineering staff was planned to finalize the plan. The output from the research was a safety improvement plan to systemically deploy treatments to unsignalized intersections as part of the safety program.


Work ◽  
2019 ◽  
Vol 63 (4) ◽  
pp. 537-545 ◽  
Author(s):  
Gemma S. Milligan ◽  
Joseph P. O’Halloran ◽  
Michael J. Tipton

2015 ◽  
Vol 137 (5) ◽  
Author(s):  
M. Dolores Esteban ◽  
José-Santos López-Gutiérrez ◽  
Vicente Negro ◽  
Clara Matutano ◽  
Francisca M. García-Flores ◽  
...  

Despite the growth of the offshore wind industry, there are currently doubts relating to the design of wind facilities in the sea. This paper expounds current, already identified structural uncertainties: problems for soil characterization and transition piece (TP) design. This document also introduces new doubts or issues to be researched in the near future in this field (wave theory, scour process, wave load actions, scale difficulty, etc.), not as yet identified due to the scarce experience in the offshore wind industry. With this in mind, technical offshore wind standards related to foundation design have been reviewed.


2013 ◽  
Vol 275-277 ◽  
pp. 852-855 ◽  
Author(s):  
Zhuang Le Yao ◽  
Chao He Chen ◽  
Yuan Ming Chen

In this paper, the overall finite element model is established, to analyze the small-sized floating foundation of a tri-floater and to make a local optimization on the stress concentration area. The transfer functions and the response spectrums of wave load and motion of floating wind turbine system are calculated by AQWA. Besides the concept of the floating foundation group is put forward in this paper. It is small in structure, easy to assemble, and it can be developed for any power of wind field.This concept has a certain reference value for the development of offshore wind industry in China.


Author(s):  
Wangwen Zhao ◽  
Wei-Ting Hsu

The concept of Design Fatigue Factors (DFFs) was introduced for providing desired level of safety in structural fatigue design, often associated with damage calculated from S-N curves. Calculation of fatigue damage from S-N curves can be affected by multiple factors, e.g. types of weld class, corrosion condition, loading conditions, stress concentration on different geometries etc. Each of them can be subject to different level of uncertainties. This study intends to recalibrate the DFFs from a detailed reliability analysis by investigating the probabilistic models derived from the database of S-N curves that has been most frequently used in offshore wind industry. The results of such study indicate that the DFFs can be reduced substantially for the corrosive environmental fatigue models from current standards to the same level of target reliability.


Sign in / Sign up

Export Citation Format

Share Document