scholarly journals Application of an airlift internal circulation membrane bioreactor for the treatment of textile wastewater

Author(s):  
Abdulkadir ÇAĞLAK ◽  
Nouha BAKARAKİ TURAN ◽  
Hanife ERKAN ◽  
Güleda Önkal ENGİN
2021 ◽  
Vol 9 (4) ◽  
pp. 105276
Author(s):  
Choerudin Choerudin ◽  
Fauziyah Istiqomah Arrahmah ◽  
Jonatan Kevin Daniel ◽  
Takahiro Watari ◽  
Takashi Yamaguchi ◽  
...  

2014 ◽  
Vol 575 ◽  
pp. 50-54 ◽  
Author(s):  
Nur Azrini Ramlee ◽  
M.N. Muhd Rodhi ◽  
A.D. Anak Brandah ◽  
A. Anuar ◽  
N.H. Alias ◽  
...  

The objectives of this study are mainly focusing on reviewing the potential of membrane bioreactor application in Batik dyes degradation and to identify the factors contributing to the permeability and selectivity of a membrane-coupled bacteria reactor. It is evidently that integrating membrane technology with biological reactors for the treatment of textile dyeing wastewaters has led to the development of three generic membrane processes within bioreactors: for separation and recycle of solids, for bubble-less aeration of the bioreactor, and for extraction of priority organic pollutants from hostile textile dyeing wastewaters. Thus, installation costs and usable floor area of the infrastructure are saved, due to the separation unit of MBR replaced the sedimentation basin that is used in current practice. It is well recognized that east coast states in Malaysia such as Kelantan and Terengganu are the main producers of “Batik” industries in which create a huge contribution to Malaysia textile economy development due to high demands from local and abroad. Batik textile wastewater is a complex and consist highly variable mixture of many polluting substances including dye. Existence of dyes in the wastewater plays a major issue and has raised significant concerns. Thus, selection of microorganism and the separation processes of the membrane bioreactor are vital to be evaluated towards an achievable productivity and efficient process separation. These are depended on several factors which include degradation of dye, temperature, retention time, pH and concentration of the textile wastewater.


2021 ◽  
Vol 16 (1) ◽  
pp. 329-341
Author(s):  
Tukaram P. Chavan ◽  
Ganpat B. More ◽  
Sanjaykumar R. Thorat

The present investigation was carried out to assess the operation of a pilot-scale submerged membrane bioreactor (SMBR) for the treatment of reactive dye and textile wastewater. The operation of SMBR model was conducted by using a polyethersulfone (PES) hollow fibre membrane with continuous flow mode at different HRTs at 8, 6 and 4 h, for 90 days. During the entire operation, the average permeate flux, TMP, F/M ratio and OLR was found to be 19 (L/m²/h), 2.6 (psi), 0.10 (g BOD/(g MLSS•d) and 0.89 (kg BOD/m³.d), respectively. The variations in the permeate flux, TMP, F/M ratio and OLR have not adversely effects on the operation of the SMBR model. Throughout the entire operation, despite the TP, TDS and conductivity, the high amount of COD (82%), BOD (86%), NO3-N (79%), TSS (98%), turbidity (97%) and colour (79%), removal was achieved. The permeate flux was declined by membrane fouling and it was recovered by chemical cleaning as well as regular backwashing during the entire operation. The results obtained from the study concluded that the hollow fibre ultrafiltration polyethersulfone (PES) membrane shows good performance while treating textile wastewater along with reactive dye solution.


Sign in / Sign up

Export Citation Format

Share Document