scholarly journals DEVELOPMENT OF THE METHOD OF DECOMPOSITION OF THE ELECTRICAL CIRCUIT BY MEANS OF ITS STRUCTURING ON THE BASIS OF THE PHYSICAL PRINCIPLE OF OPERATION MODEL

Author(s):  
A. A. Yakovlev ◽  
V. N. Grebennikov ◽  
S. G. Postupaeva

A method of decomposition of the electrical circuit is considered, which allows to obtain its systemic representation, which simplifies the identification of the principles and features of its functioning. On the example of an electrical circuit of a transistor radio receiver of direct amplification, the process of its structuring is shown according to the physical principle of action laid down in it, which allows its further decomposition. The method allows you to represent an electrical circuit in the form of a four-level model, which makes it possible to work with it for developers of different qualifications.


2015 ◽  
Vol 39 (1) ◽  
pp. 117-124
Author(s):  
Piotr Kiełczyński ◽  
Marek Szalewski

Abstract The paper presents a new electromechanical amplifying device i.e., an electromechanical biological transistor. This device is located in the outer hair cell (OHC), and constitutes a part of the Cochlear amplifier. The physical principle of operation of this new amplifying device is based on the phenomenon of forward mechanoelectrical transduction that occurs in the OHC's stereocilia. Operation of this device is similar to that of classical electronic Field Effect Transistor (FET). In the considered electromechanical transistor the input signal is a mechanical (acoustic) signal. Whereas the output signal is an electric signal. It has been shown that the proposed electromechanical transistor can play a role of the active electromechanical controlled element that has the ability to amplify the power of input AC signals. The power required to amplify the input signals is extracted from a battery of DC voltage. In the considered electromechanical transistor, that operates in the amplifier circuit, mechanical input signal controls the flow of electric energy in the output circuit, from a battery of DC voltage to the load resistance. Small signal equivalent electrical circuit of the electromechanical transistor is developed. Numerical values of the electrical parameters of the equivalent circuit were evaluated. The range, which covers the levels of input signals (force and velocity) and output signals (voltage, current) was determined. The obtained data are consistent with physiological data. Exemplary numerical values of currents, voltages, forces, vibrational velocities and power gain (for the assumed input power levels below 1 picowatt (10-12 W)), were given. This new electromechanical active device (transistor) can be responsible for power amplification in the cochlear amplifier in the inner ear.



Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6607
Author(s):  
Guoliang Zhang ◽  
Suhua Lou ◽  
Yaowu Wu ◽  
Yang Wu ◽  
Xiangfeng Wen

To promote the collaborative development of the bio-natural gas (BNG) industry and the integrated energy system (IES), this paper proposes a new commerce operation model considering the gas price adjustment mechanism for the IES with the utilization of bio-natural gas. The bi-level optimization model is used to simulate the clearing process within the open energy market framework, and the uncertainties of variable renewable energy output are modeled with a set of scenarios through the stochastic programming approach. In the upper-level model, the energy management center adjusts the bio-natural gas price rationally to minimize the expected total operating cost and release the price signal to the lower-level model; the lower-level model simulates the sub-markets clearing process to formulate detailed operation schemes. The bi-level model is transformed into a mathematical programming problem with equilibrium constraints (MPEC) through the Karush–Kuhn–Tucher (KKT) condition of the lower-level model, and the nonlinear model is converted into a mixed-integer linear programming problem and solved. The numerical results verified the effectiveness of the proposed model.





Author(s):  
J. Allègre ◽  
P. Lefebvre ◽  
J. Camassel ◽  
B. Beaumont ◽  
Pierre Gibart

Time-resolved photoluminescence spectra have been recorded on three GaN epitaxial layers of thickness 2.5 μm, 7 μm and 16 μm, at various temperatures ranging from 8K to 300K. The layers were deposited by MOVPE on (0001) sapphire substrates with standard AlN buffer layers. To achieve good homogeneities, the growth was in-situ monitored by laser reflectometry. All GaN layers showed sharp excitonic peaks in cw PL and three excitonic contributions were seen by reflectivity. The recombination dynamics of excitons depends strongly upon the layer thickness. For the thinnest layer, exponential decays with τ ~ 35 ps have been measured for both XA and XB free excitons. For the thickest layer, the decay becomes biexponential with τ1 ~ 80 ps and τ2 ~ 250 ps. These values are preserved up to room temperature. By solving coupled rate equations in a four-level model, this evolution is interpreted in terms of the reduction of density of both shallow impurities and deep traps, versus layer thickness, roughly following a L−1 law.



2013 ◽  
Vol 61 (3) ◽  
pp. 569-579 ◽  
Author(s):  
A. Poniszewska-Marańda

Abstract Nowadays, the growth and complexity of functionalities of current information systems, especially dynamic, distributed and heterogeneous information systems, makes the design and creation of such systems a difficult task and at the same time, strategic for businesses. A very important stage of data protection in an information system is the creation of a high level model, independent of the software, satisfying the needs of system protection and security. The process of role engineering, i.e. the identification of roles and setting up in an organization is a complex task. The paper presents the modeling and design stages in the process of role engineering in the aspect of security schema development for information systems, in particular for dynamic, distributed information systems, based on the role concept and the usage concept. Such a schema is created first of all during the design phase of a system. Two actors should cooperate with each other in this creation process, the application developer and the security administrator, to determine the minimal set of user’s roles in agreement with the security constraints that guarantee the global security coherence of the system.





2021 ◽  
Vol 67 (1 Jan-Feb) ◽  
pp. 91
Author(s):  
N. Sene

This paper revisits Chua's electrical circuit in the context of the Caputo derivative. We introduce the Caputo derivative into the modeling of the electrical circuit. The solutions of the new model are proposed using numerical discretizations. The discretizations use the numerical scheme of the Riemann-Liouville integral. We have determined the equilibrium points and study their local stability. The existence of the chaotic behaviors with the used fractional-order has been characterized by the determination of the maximal Lyapunov exponent value. The variations of the parameters of the model into the Chua's electrical circuit have been quantified using the bifurcation concept. We also propose adaptive controls under which the master and the slave fractional Chua's electrical circuits go in the same way. The graphical representations have supported all the main results of the paper.



Sign in / Sign up

Export Citation Format

Share Document