scholarly journals Graphene oxide and graphite oxide used as reinforcement in composites synthesized from cellulose acetate and polyacrylic acid

Author(s):  
Juan Antonio Sánchez-Márquez ◽  
Rosalba Fuentes-Ramírez ◽  
Beatriz Ruíz-Camacho

This work focused on the synthesis and characterization of composites, obtained based on polyacrylic acid and cellulose acetate, which incorporated graphite oxide and graphene oxide as structural reinforcement. The composites were obtained using the phase inversion method and the incorporation of the reinforcement, during the synthesis process, was carried out in proportions of 1% by weight. The characterization of the composites was carried out using IR, Raman, BET, SEM spectroscopy techniques and methods for determining acidic and basic sites. The results obtained showed that it is possible to synthesize composites that present a network configuration, made up of layers that give the material the effect of depth. Furthermore, it was possible to observe that both graphite oxide and graphene oxide were deposited on the outer edge of the hexagonal pores present in the material. Finally, the concentration values of acidic and basic sites were obtained. The presence of these sites could be associated with carboxylic groups inserted during the oxidation of graphitic materials and with non-reactive sites present in cellulose.

Author(s):  
Juan SÁNCHEZ-MÁRQUEZ ◽  
Rosalba FUENTES-RAMÍREZ ◽  
Zeferino GAMIÑO-ARROYO

This work focused on the study of the hexavalent chromium removal process from graphene oxide supported on a cross-linked cellulose acetate and polyacrylic acid polymeric membrane. The membranes were synthesized by the phase inversion method and Graphene oxide was added in proportions of 1% by weight to the polymeric material. Graphene oxide was obtained from crystalline graphite (Electron Microscope Science, No. 70230). The graphite was oxidized using the improved method of Hummers. The characterization of polymer and graphene oxide was made by Raman spectroscopy. The surface charge and point of zero charge of the materials were evaluated using a potentiometric titration method proposed by Loskutov and Kuzin. The removal of Cr (VI) was studied as a function of contact time and of initial concentration of Cr (VI). The removal of Cr (VI) (~90%) mainly occurs in a contact time from 32 to 64 h when the initial concentration of Cr (VI) is 1 mg/L.


Materials ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1050 ◽  
Author(s):  
Roksana Muzyka ◽  
Sabina Drewniak ◽  
Tadeusz Pustelny ◽  
Maciej Chrubasik ◽  
Grażyna Gryglewicz

Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 563
Author(s):  
Muhammad Zahid ◽  
Anum Rashid ◽  
Saba Akram ◽  
H. M. Fayzan Shakir ◽  
Zulfiqar Ahmad Rehan ◽  
...  

In this study, cellulose acetate (CA) was blended with sulfonated graphene oxide (SGO) nanomaterials to endow a nanocomposite membrane for wastewater treatment with improved hydrophilicity and anti-biofouling behavior. The phase inversion method was employed for membrane fabrication using tetrahydrofuran (THF) as the solvent. The characteristics of CA-SGO-doped membranes were investigated through thermal analysis, contact angle, SEM, FTIR, and anti-biofouling property. Results indicated that anti-biofouling property and hydrophilicity of CA-SGO nanocomposite membranes were enhanced with addition of hydrophilic SGO nanomaterials in comparison to pristine CA membrane. FTIR analysis confirmed the successful decoration of SGO groups on CA membrane surface while revealing its morphological properties through SEM analysis. Thermal analysis performed using DSC confirmed the increase in thermal stability of CA-SGO membranes with addition of SGO content than pure CA membrane.


Author(s):  
Majed Alghamdi ◽  
Adel El-Zahhar

In this study the effects of graphene oxide (GO) nanosheets on the physicochemical properties and performances of cellulose acetate butyrate (CAB) membranes were investigated. Nanocomposite membranes were fabricated using Cand a small amount of GO in the range of 0 to 0.07 wt.%, using a conventional phase-inversion method. Membranes were characterized by different methods and their performances were tested using a dead-end filtration system. Compared with pristine Cmembrane, experimental results demonstrated an improvement in features such as hydrophilicity, permeability, salt rejection, antifouling, and stability. The results proved an increase in the porosity and pore sizes of membranes with GO addition. Furthermore, the membrane containing 0.07 wt.% of GO exhibited a low contact angle of 37? and a dramatic improvement in water flux of about 450% (from 2 to 11 L/m2 h). Moreover, it demonstrated a salt rejection of 39% for NaCl and 87% for Na2SO4, corresponding to improvements of about 144% and 93%, respectively. Furthermore, the results revealed a higher antifouling property with an 86% improvement in flux recovery and higher stability in terms of performance and thermal properties compared to CAB.


2020 ◽  
Vol 12 (2) ◽  
pp. 52
Author(s):  
Sabina Elżbieta Drewniak ◽  
Roksana Muzyka ◽  
Łukasz Drewniak

The paper focused on the description of the reduced graphene oxide (rGO) structure. This material is obtained from a multistage production process. Each of these stages has a large impact on its structure (the number and type of functional groups, number of defect or the size of the flakes), and this in turn affects its properties. We would like to visualize the reduced graphene oxide, both using a diagram showing the atomic structure, as well as by imaging using scanning electron microscopy (SEM) and atomic force microscopy (AFM). In the paper, the elementary composition of selected elements and data obtained from X-ray photoelectron spectroscopy technique (XPS) will be also presented. Full Text: PDF ReferencesX. Peng, Y. Wu, N. Chen, Z. Zhu, J. Liu, and H. Wang, "Facile and highly efficient preparation of semi-transparent, patterned and large-sized reduced graphene oxide films by electrochemical reduction on indium tin oxide glass surface", Thin Solid Films 692, 137626 (2019). CrossRef L. Guo, Y.-W. Hao, P.-L. Li, J.-F. Song, R.-Z. Yang, X.-Y. Fu, S.-Y. Xie, J. Zhao and Y.-L. Zhang, "Improved NO2 Gas Sensing Properties of Graphene Oxide Reduced by Two-beam-laser Interference", Sci. Rep. 8, 1 (2018). CrossRef Y. S. Milovanov, V.A. Skryshevsky, , O.M. Slobodian, , D.O. Pustovyi, X.Tang, J.-P. Raskin, and A.N. Nazarov, "Influence of Gas Adsorption on the Impedance of Graphene Oxide", 2019 IEEE 39th Int. Conf. Electron. Nanotechnology, ELNANO 2019 - Proc. 8783946, CrossRef M. Reddeppa, B.-G. Park, , M.-D. Kim, K.R. Peta, N.D. Chinh, D. Kim, S.-G. Kim, and G. Murali, "H2, H2S gas sensing properties of rGO/GaN nanorods at room temperature: Effect of UV illumination", Sensors Actuators B. Chem. 264, (2018). CrossRef W. L. Xu, C. Ding, , M.-S. Niu, X.-Y. Yang, F. Zheng, J. Xiao, M. Zheng and X.-T. Hao, "Reduced graphene oxide assisted charge separation and serving as transport pathways in planar perovskite photodetector", Org. Electron. 81, 105663 (2020). CrossRef K. Sarkar, M. Hossain, P. Devi, K. D. M. Rao, and P. Kumar, "Self‐Powered and Broadband Photodetectors with GaN: Layered rGO Hybrid Heterojunction", Adv. Mater. Interfaces, 6, 20 (2019). CrossRef S. Pei and H. M. Cheng, "The reduction of graphene oxide", Carbon, 50, 9 (2012). CrossRef R. Muzyka, S. Drewniak, T. Pustelny, M. Chrubasik, and G. Gryglewicz, "Characterization of Graphite Oxide and Reduced Graphene Oxide Obtained from Different Graphite Precursors and Oxidized by Different Methods Using Raman Spectroscopy", Materials 11, 7 (2018). CrossRef M.-H. Tran and H. K. Jeong, "Influence of the Grain Size of Precursor Graphite on the Synthesis of Graphite Oxide", New Phys. Sae Mulli, 63, 2 (2013). CrossRef M.-H. Tran, C.-S. Yang, S. Yang, I.-J. Kim, and H. K. Jeong, "Influence of graphite size on the synthesis and reduction of graphite oxides", Curr. Appl. Phys., 14, SUPPL. 1 (2014). CrossRef N. Sharma, Y. Jain, , M. Kumari, R. Gupta, S.K. Sharma, K. Sachdev, "Synthesis and Characterization of Graphene Oxide (GO) and Reduced Graphene Oxide (rGO) for Gas Sensing Application", Macromol. Symp. 376, 1 (2017). CrossRef M. Wei, L. Qiao, , H. Zhang, S. Karakalos, K. Ma, Z. Fu, M.T. Swihart, G. Wu, "Engineering reduced graphene oxides with enhanced electrochemical properties through multiple-step reductions", Electrochim. Acta, 258 (2017). CrossRef S. Drewniak, M. Procek, R. Muzyka, T. Pustelny, "Comparison of Gas Sensing Properties of Reduced Graphene Oxide Obtained by Two Different Methods", Sensors, 20, 11 (2020). CrossRef L. Li, R.-D. Lv, S. -C. Liu, Z. D. Chen, J. Wang, Y.-G. Wang, W. Ren, "Using Reduced Graphene Oxide to Generate Q-Switched Pulses in Er-Doped Fiber Laser", Chinese Physics Letters, 35, 11 (2018) CrossRef


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
J. A. Sánchez-Márquez ◽  
R. Fuentes-Ramírez ◽  
I. Cano-Rodríguez ◽  
Z. Gamiño-Arroyo ◽  
E. Rubio-Rosas ◽  
...  

Membranes made of carbon nanotubes and cellulose acetate with polyacrylic acid were designed in order to study their properties and their applicability for chromium removal. The membranes were prepared by phase inversion method using cellulose acetate and polyacrylic acid. Carbon nanotubes were added to the membrane during their process of synthesis in proportions of 1% by weight. The pores in the material are formed in layers, giving the effect of depth and forming a network. Both the carbon nanotubes and membranes were characterized by IR, Raman, and SEM spectroscopy. In addition, the concentration of acidic and basic sites and the surface charge in the materials were determined. The concentration of acid sites for oxidized nanotubes was 4.0 meq/g. The removal of Cr(VI) was studied as a function of contact time and of initial concentration of Cr(VI). The removal of Cr(VI) (~90%) mainly occurs in a contact time from 32 to 64 h when the initial concentration of Cr(VI) is 1 mg/L.


Author(s):  
X. Lin ◽  
X. K. Wang ◽  
V. P. Dravid ◽  
J. B. Ketterson ◽  
R. P. H. Chang

For small curvatures of a graphitic sheet, carbon atoms can maintain their preferred sp2 bonding while allowing the sheet to have various three-dimensional geometries, which may have exotic structural and electronic properties. In addition the fivefold rings will lead to a positive Gaussian curvature in the hexagonal network, and the sevenfold rings cause a negative one. By combining these sevenfold and fivefold rings with sixfold rings, it is possible to construct complicated carbon sp2 networks. Because it is much easier to introduce pentagons and heptagons into the single-layer hexagonal network than into the multilayer network, the complicated morphologies would be more common in the single-layer graphite structures. In this contribution, we report the observation and characterization of a new material of monolayer graphitic structure by electron diffraction, HREM, EELS.The synthesis process used in this study is reported early. We utilized a composite anode of graphite and copper for arc evaporation in helium.


Sign in / Sign up

Export Citation Format

Share Document