Effect of rapid thermal annealing on sprayed Cu2SnS3 thin films for solar-cell application

2020 ◽  
Vol 59 (10) ◽  
pp. 105503
Author(s):  
Wafaa Magdy ◽  
Ayaka Kanai ◽  
F. A. Mahmoud ◽  
E. T. El Shenawy ◽  
S. A. Khairy ◽  
...  
2020 ◽  
Vol 12 (7) ◽  
pp. 924-929
Author(s):  
Hemant Kumar ◽  
Mangej Singh

Cadmium Selenide (CdSe) thin films have been deposited on a cleaned glass substrate by thermal vacuum evaporation method under the pressure of 10-5 torr. These CdSe thin films were also kept into a quart glass tube for rapid thermal annealing at 60 and 120 second using a 500 W halogen lamp for crystalline the structure. These thin films were characterized for structural, optical and thermo-electrical properties. The optical studies have been done using UV-VIS-NIR, shows that the transition of the deposited film is found to be a direct band gap of 1.74, 1.70 and 1.67 eV for asdeposited, 60 sec and 120 sec annealed thin films respectively. It was also found that absorbance has increased and transmission decreased with increasing annealing time, the change in the extinction coefficient with energy (hν) has been also measured. The Thermoelectric power (TEP) studies confirm the n-type nature of CdSe thin films but as well as annealing time increased the hole concentration increased resultant n-nature of CdSe thin film changing toward p-type nature, the Seebeck coefficient for different annealing time at as-deposited (RT), 60 seconds and 120 seconds have observed 549, 949 and 1031 μV/K respectively. The SEM result shows that with increasing annealing time the grain size and roughness of surface are increased. X-ray diffraction (XRD) studies indicate that the film is like a cubic crystal structure with average crystalline size (D) was measured using Scherrer formula and it is 16.44 nm.


2014 ◽  
Vol 939 ◽  
pp. 437-442
Author(s):  
Chao Chang Arthur Chen ◽  
Shou Chih Cheng ◽  
Ming Hsien Chan ◽  
Wen Ching Hsu ◽  
Shih Lung Cheng

Multi-wire sawing process with free abrasive slurry or called multi-wire slurry wire sawing (MW-SWS) process has been popularly adopted in slicing of silicon substrates for solar cell application. However, the chipping or edge cracking of thin thickness as 200 μm of such silicon substrates need to be improved in current mass production. The potential subsurface cracks induced by previous edge grinding or brush polishing of silicon brick may be the main cause. This paper is to develop a rapid thermal annealing (RTA) process for thermal annealing of the surface quality of silicon brick before MR-SWS. In this study, a RTA furnace is designed and used to improve the material property of surface of silicon brick. A quartz crucible is used as heating source with the maximum heated specimen size of 156×156×100 mm (W×H×L). The bulk silicon brick used in this study is selected with a size of 20×10×20 mm (W×H×L) and supplied by the Sino-American Silicon Ltd. (SAS) in Hsinchu, Taiwan. The nitrogen gas is also injected as a protective gas for target heating temperature around 550°C with rapid heating rate of 50°C per second. The micro-Vickers (Akashi MVK-H1) and SEM (JSM-6500F, JOEL) instruments have been used to observe the improvement of rectified material properties of bulk silicon substrate. Experiments of silicon wafers have been first performed for obtaining the recipe of RTA testing and then adjusting for silicon brick testing. Results have been verified by the lower surface hardness and larger crystal grain size after RTA treatment. Furthermore, such treated silicon brick can be further adopted for MW-SWS process to identify the effects of reducing chipping or edge cracking of silicon substrates for solar cell application.


2003 ◽  
Vol 27 (11) ◽  
pp. 1083-1086 ◽  
Author(s):  
H. Ito ◽  
T. Kusunoki ◽  
H. Saito ◽  
S. Ishio

2020 ◽  
Vol 12 (2) ◽  
pp. 02037-1-02037-6
Author(s):  
Ranjitha R. ◽  
◽  
T. K. Subramanyam ◽  
S. Pavan kumar ◽  
Nagesh M ◽  
...  

1996 ◽  
Vol 35 (Part 1, No. 8) ◽  
pp. 4220-4224 ◽  
Author(s):  
M. D. Kim ◽  
T. W. Kang ◽  
M. S. Han ◽  
T. W. Kim

1995 ◽  
Vol 387 ◽  
Author(s):  
M. J. O'Keefe ◽  
C. L. Cerny

AbstractPhysical vapor deposition of Group VI elements (Cr, Mo, W) can lead to the formation of a metastable A-15 crystal structure under certain processing conditions. Typically, a thermally induced transformation of the metastable A-15 structure into the equilibrium body centered cubic structure has been accomplished by conventional furnace annealing at T/Tm ≈ 0.3 from tens of minutes to several hours. In this study we report on the use of rapid thermal annealing to transform sputter deposited A- 15 crystal structure tungsten and chromium thin films into body centered cubic films within the same temperature range but at times on the order of one minute. The minimum annealing times and temperatures required for complete transformation of the A-15 phase into the BCC phase varied from sample to sample, indicating that the transformation was dependent on the film characteristics. The electrical resistivity of A-15 Cr and W films was measured before and after rapid thermal annealing and was found to significantly decrease after transformation into the body center cubic phase.


Sign in / Sign up

Export Citation Format

Share Document