Process gas dependence of the spin Peltier effect in Pt/Fe3O4 hybrid structures

Author(s):  
Takuma Itoh ◽  
Asuka Miura ◽  
Ken-ichi Uchida ◽  
Hideto YANAGIHARA

Abstract The spin Peltier effect (SPE) in Pt/Fe3O4 hybrid structures with epitaxial Fe3O4 layers synthesized by reactive sputtering using two different process gases, Ar/O2 and Kr/O2, was investigated. The magnitude of the SPE-induced temperature modulation for the Fe3O4 film grown using Kr/O2 was approximately 40% larger than that grown using Ar/O2 despite almost the same crystalline structures and magnetic and electric properties of the films. The enhancement of the SPE signal for the film grown with Kr/O2 can be attributed to an increase in the spin current injected into the Fe3O4 film owing to its large roughness.

2001 ◽  
Vol 158 (2) ◽  
pp. 175-179 ◽  
Author(s):  
K. Yamaura ◽  
D.P. Young ◽  
T. Siegrist ◽  
C. Besnard ◽  
C. Svensson ◽  
...  

2014 ◽  
Vol 61 (S1) ◽  
pp. S330-S332
Author(s):  
T. Matsumoto ◽  
N. Suzuki ◽  
S. Kanamaru ◽  
H. Hashimoto ◽  
M. Nakanishi ◽  
...  

Author(s):  
A. Jelinowskal ◽  
M. Menvielle ◽  
L. Szarka ◽  
P. Tucholkal ◽  
B. V. Wesztergom ◽  
...  

2019 ◽  
Vol 11 (8) ◽  
pp. 2340 ◽  
Author(s):  
Stegenta ◽  
Sobieraj ◽  
Pilarski ◽  
Koziel ◽  
Białowiec

Composting processes reduce the weight and volume of biowaste and produce products that can be used in agriculture (e.g., as fertilizer). Despite the benefits of composting, there are also problems such as odors and the emission of pollutants into the atmosphere. This research aimed to investigate the phenomenon of process gas (CO, CO2, NO, O2) evolution within a large-scale municipal composter. The effects of turning frequency and pile location (outdoor vs. indoors) on process gas and temperature spatial and temporal evolution were studied in six piles (37‒81 tons of initial weight) over a six-month period. The biowaste consisted of green waste and municipal sewage sludge. The chemical composition and temperature of process gases within four cross sections with seven sampling locations were analyzed weekly for ~7–8 weeks (a total of 1375 cross sections). The aeration degree, temperature, CO, CO2, and NO concentration and their spatial and temporal distribution were analyzed. Final weight varied from 66% reduction to 7% weight gain. Only 8.2% of locations developed the desired chimney effect (utilizing natural buoyancy to facilitate passive aeration). Only 31.1% of locations reached thermophilic conditions (necessary to inactivate pathogens). Lower O2 levels corresponded with elevated CO2 concentrations. CO production increased in the initial composting phase. Winter piles were characterized by the lowest CO content. The most varied was the NO distribution in all conditions. The O2 concentration was lowest in the central part of the pile, and aeration conditions were good regardless of the technological regime used. Turning once a week was sufficient overall. Based on the results, the most favorable recommended procedure is turning twice a week for the first two weeks, followed by weekly turning for the next two weeks. After that, turning can be stopped unless additional removal of moisture is needed. In this case, weekly turning should continue until the process is completed. The size of the pile should follow the surface-to-volume ratio: <2.5 and <2 for cooler ambient conditions.


Sign in / Sign up

Export Citation Format

Share Document