scholarly journals THE ORIENTATION OF BIOLOGICAL NITROGEN TRANSFORMATION PROCESSES IN SOIL UNDER THE ORGANIC PRODUCTION OF AGRICULTURAL PRODUCTS

2017 ◽  
Vol 25 ◽  
pp. 18-24
Author(s):  
V. V. Volkohon ◽  
A. M. Moskalenko ◽  
S. B. Dimova ◽  
M. A. Zhurba ◽  
K. I. Volkohon ◽  
...  

The paper covers the study of direct impact and after-effect of 40 t/ha of cattle manure on theorientation of nitrogen fixation and biological denitrification processes in the root zone of potatoes,spring barley, pea, and winter wheat plants in rotation in a stationary field experiments on leachedblack soil. Application of manure had significantly increased the nitrogen fixation activity, whilepromoting a high level of N2O emission. The use of microbial preparations for pre-seeding bacterization of seeds optimizes the course of biological nitrogen transformation process — through theenhancement of nitrogen fixation activity and reduction of gaseous nitrogen losses (with the exception of Biogran use on potatoes in the year of manure application). Introduction with manure of alarge number of microorganisms to the soil offsets the positive effect of biopreparations use. Yieldrecords and estimation of grain output per hectare within the crop rotation cycle indicates the practicability of combined application of manure and microbial preparations (excluding the year of direct effect of organic fertilizer) in organic agriculture.

2011 ◽  
Vol 12 ◽  
pp. 181-192
Author(s):  
O.O. Shahovnina

Potential activity of nitrogen fixation on washed roots of investigated varieties of spring triticale determined in field experiments has characterized by considerable fluctuations both during single phenophase in different years of research and throughout the vegetative period, that was caused by the influence of environment factors as well as by the existence of variability within the cultivar. The cultivar Oberig kharkovsky possesses the considerable polymorphism by the nitrogen fixation activity index in root zone of plants. Presowing inoculation of triticale seeds with active strain Azospirillum sp. 10 results in the increase of number of plants with higher nitrogen fixation activity on the washed roots.


2013 ◽  
Vol 17 ◽  
pp. 7-20
Author(s):  
O. V. Nadkernychna ◽  
E. P. Kopylov

The paper presents the study of active nitrogen fixation bacteria of genera Azotobacter, Azospirillum, Bacillus, Flavobacterium, Enterobacter and Pseudomonas isolated from root zone of spring wheat plants. The ability of selected diazotrophs to form associative systems with spring wheat was investigated. The most significant increase of molecular nitrogen fixation activity in root zone of plants was observed under the Azospirillum species background.


2018 ◽  
Author(s):  
Deng Liu ◽  
Michelle Liberton ◽  
Jingjie Yu ◽  
Himadri B. Pakrasi ◽  
Maitrayee Bhattacharyya-Pakrasi

ABSTRACTBiological nitrogen fixation is catalyzed by nitrogenase, a complex metalloenzyme found only in prokaryotes. N2fixation is energetically highly expensive, and an energy generating process such as photosynthesis can meet the energy demand of N2fixation. However, synthesis and expression of nitrogenase is exquisitely sensitive to oxygen. Thus, engineering nitrogen fixation activity in photosynthetic organisms that produce oxygen is challenging. Cyanobacteria are oxygenic photosynthetic prokaryotes, and some of them also fix N2. Here, we demonstrate a feasible way to engineer nitrogenase activity in the non-diazotrophic cyanobacteriumSynechocystissp. PCC 6803 through the transfer of 35 nitrogen fixation (nif) genes from the diazotrophic cyanobacteriumCyanothecesp. ATCC 51142. In addition, we have identified the minimalnifcluster required for such activity inSynechocystis6803. Moreover, nitrogenase activity was significantly improved by increasing the expression levels ofnifgenes. Importantly, the O2tolerance of nitrogenase was enhanced by introduction of uptake hydrogenase genes, showing this to be a functional way to improve nitrogenase enzyme activity under micro-oxic conditions. To date, our efforts have resulted in engineeredSynechocystis6803 strains that remarkably have more than 30% N2-fixation activity compared to that inCyanothece51142, the highest such activity established in any non-diazotrophic oxygenic photosynthetic organism. This study establishes a baseline towards the ultimate goal of engineering nitrogen fixation ability in crop plants.IMPORTANCEApplication of chemically synthesized nitrogen fertilizers has revolutionized agriculture. However, the energetic costs of such production processes as well as the wide spread application of fertilizers have raised serious environmental issues. A sustainable alternative is to endow crop plants the ability to fix atmospheric N2in situ. One long-term approach is to transfer allnifgenes from a prokaryote to plant cells, and express nitrogenase in an energy-producing organelle, chloroplast or mitochondrion. In this context,Synechocystis6803, the non-diazotrophic cyanobacterium utilized in this study, provides a model chassis for rapid investigation of the necessary requirements to establish diazotrophy in an oxygenic phototroph.


2014 ◽  
Vol 18 ◽  
pp. 16-29
Author(s):  
V.V. Volkogon ◽  
M.A. Zhurba

The dynamics of nitrogen fixation, emissions of N2O and CO2 in pea agrocoenoses under the influence of different fertilization systems and pre-sowing seeds inoculation with microbial preparation Rhizohumin were studied in stationary field experiment on leached black soil (short crop rotation potatoes – spring barley – peas – winter wheat). It was observed that symbiotic nitrogen fixation process had become active on the second year aftereffect of 40 t/ha of cattle manure, green manure and use of low (N30P30K30) and medium (N60P60K60) doses of mineral fertilizers. Rhizohumin had significantly increase nitrogen fixation activity in all variants except of the one with manure. Increase of N2O emissions had corresponded to the increasing doses of mineral fertilizers. The use of biological preparation had ensured the reduction of gaseous nitrogen losses due to the initiation of plants development. Carbon dioxide emission values had depended on the type and dose of fertilizers. Rhizohumin had reduced the emission of gaseous carbon compounds in variants with different fertilizer backgrounds due to its extensive use in the formation of additional yield.


2016 ◽  
Vol 3 (3) ◽  
pp. 28-34
Author(s):  
V. Volkogon ◽  
I. Korotka

Aim. To determine physiologically expedient rates of mineral nitrogen in winter rye production on sod-podzol- ic soils based on the orientation of the processes of biological nitrogen transformation in the plants rhizosphere. Methods. Field studies, gas chromatography determination of potential nitrogen fi xation activity and potential emissions of N 2 O. Results. The results obtained have demonstrated that the rates of mineral nitrogen, not ex- ceeding 60 kg/ha, can be considered physiologically expedient for winter rye production on sod-podzolic soils. Under the application of microbial preparation Diazobakteryn, there is a higher physiological need of plants for nitrogen, which allows increasing the rates of nitrogen fertilizers up to 90 kg/ha. Conclusions. The orienta- tion of the processes of biological nitrogen transformation in the root zone of plants is a reliable indicator of determining the appropriateness of nitrogen fertilization of crops.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Manabu Tobisa ◽  
Masataka Shimojo ◽  
Yasuhisa Masuda

We investigated the root distribution and nitrogen fixation activity of American jointvetch (Aeschynomene americanaL.) cv. Glenn, under waterlogging treatment. The plants were grown in pots under three different treatments: no waterlogging (control), 30 days of waterlogging (experiment 1), and 40 days of waterlogging (experiment 2). The plants were subjected to the treatments on day 14 after germination. Root dry matter (DM) weight distribution of waterlogged plants was shallower than controls after day 20 of waterlogging. Throughout the study period, the total root DM weight in waterlogged plants was similar to that in the controls. Enhanced rooting (adventitious roots) and nodule formation at the stem base were observed in waterlogged plants after day 20 of waterlogging. The average DM weight of individual nodules on the region of the stem between the soil surface and water surface of waterlogged plants was similar to that of individual taproot nodules in the controls. Waterlogged plants had slightly greater plant DM weight than the controls after 40 days of treatment. The total nitrogenase activity (TNA) of nodules and nodule DM weight were higher in waterlogged plants than in the controls. Waterlogged American jointvetch had roots with nodules both around the soil surface and in the area between the soil surface and water surface after 20 days of waterlogging, and they maintained high nitrogenase activity and net assimilation rate that resulted in an increased growth rate.


2011 ◽  
Vol 52 (No. 10) ◽  
pp. 435-440 ◽  
Author(s):  
M. Geneva ◽  
G. Zehirov ◽  
E. Djonova ◽  
N. Kaloyanova ◽  
G. Georgiev ◽  
...  

The study evaluated the response of pea (Pisum sativum cv. Avola) to arbuscular mycorrhizal fungi (AM) species Glomus mosseae and Glomus intraradices and Rhizobium leguminosarum bv. viceae, strain D 293, regarding the growth, photosynthesis, nodulation and nitrogen fixation activity. Pea plants were grown in a glasshouse until the flowering stage (35 days), in 4 kg plastic pots using leached cinnamonic forest soil (Chromic Luvisols – FAO) at P levels 13.2 (P1) and 39.8 (P2) mg P/kg soil. The obtained results demonstrated that the dual inoculation of pea plants significantly increased the plant biomass, photosynthetic rate, nodulation, and nitrogen fixation activity in comparison with single inoculation with Rhizobium leguminosarum bv. viceae strain D 293. On the other hand, coinoculation significantly increased the total phosphorus content in plant tissue, acid phosphatase activity and percentage of root colonization. The effectiveness of coinoculation with Rhizobium leguminosarum and Glomus mosseae was higher at the low phosphorus level while the coinoculation with Glomus intraradices appeared to be the most effective at higher phosphorus level.


2019 ◽  
Vol 32 (9) ◽  
pp. 1196-1209
Author(s):  
Zaiyong Si ◽  
Qianqian Yang ◽  
Rongrong Liang ◽  
Ling Chen ◽  
Dasong Chen ◽  
...  

Little is known about the genes participating in digalactosyldiacylglycerol (DGDG) synthesis during nodule symbiosis. Here, we identified full-length MtDGD1, a synthase of DGDG, and characterized its effect on symbiotic nitrogen fixation in Medicago truncatula. Immunofluorescence and immunoelectron microscopy showed that MtDGD1 was located on the symbiosome membranes in the infected cells. β-Glucuronidase histochemical staining revealed that MtDGD1 was highly expressed in the infection zone of young nodules as well as in the whole mature nodules. Compared with the control, MtDGD1-RNA interference transgenic plants exhibited significant decreases in nodule number, symbiotic nitrogen fixation activity, and DGDG abundance in the nodules, as well as abnormal nodule and symbiosome development. Overexpression of MtDGD1 resulted in enhancement of nodule number and nitrogen fixation activity. In response to phosphorus starvation, the MtDGD1 expression level was substantially upregulated and the abundance of nonphospholipid DGDG was significantly increased in the roots and nodules, accompanied by corresponding decreases in the abundance of phospholipids such as phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol. Overall, our results indicate that DGD1 contributes to effective nodule organogenesis and nitrogen fixation by affecting the synthesis and content of DGDG during symbiosis.


2020 ◽  
pp. PBIOMES-09-19-0
Author(s):  
Rahul A. Bahulikar ◽  
Srinivasa R. Chaluvadi ◽  
Ivone Torres-Jerez ◽  
Jagadish Mosali ◽  
Jeffrey L. Bennetzen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document