Distribution and Contamination Status of Heavy Metals in the Surface Sediments along Western Coast of Bali Strait, Banyuwangi

Author(s):  
Defri Yona ◽  
Syarifah Hikmah Julinda Sari ◽  
Anedathama Kretarta ◽  
Citra Ravena Putri Effendy ◽  
Misba Nur Aini ◽  
...  

This study attempted to analyze the distribution and contamination status of heavy metals (Cu, Fe and Zn) along western coast of Bali Strait in Banyuwangi, East Java. Bali Strait is one of the many straits in Indonesia with high fisheries activities that could potentially contributed to high heavy metal pollution. There were five sampling areas from the north to south: Pantai Watu Dodol, Pantai Kalipuro, Ketapang Port, Pantai Boom and Muncar as the fish landing area. Heavy metal pollution in these locations comes from many different activities such as tourism, fish capture and fish industry and also domestic activities. Contamination factor (CF), geo-accumulation index (Igeo) and enrichment factor (EF) of each heavy metal were calculated to obtain contamination status of the research area. The concentrations of Fe were observed the highest (1.5-129.9 mg/kg) followed by Zn (13.2-23.5 mg/kg) and Cu (2.2-7.8 mg/kg). The distribution of Cu, Fe and Zn showed variability among the sampling locations in which high concentrations of Cu and Zn were higher in Ketapang Port, whereas high concentration of Fe was high in almost all sampling locations. According to the pollution index, contamination factors of Cu, Fe and Zn were low (CF < 1 and Igeo < 1). However, high index of EF (> 50) showed high influence of the anthropogenic activities to the contribution of the metals to the environment. This could also because of the high background value used in the calculation of the index due to the difficulties in finding background value from the sampling areas.Keywords: heavy metals, pollution index, contamination factor, geo-accumulation index, Bali Strait

2019 ◽  
Vol 1 ◽  
pp. 186-195
Author(s):  
A A Tyovenda ◽  
S I Ikpughul ◽  
T Sombo

Heavy metal pollution of water, sediments and Algae in the upper region of River Benue at Jimeta-Yola, Adamawa state, Nigeria was assessed. The concentrations of the heavy metals (Pb, Hg, Ni, Cu, Cr, Zn, Mn, Fe) in the samples were analyzed using Atomic Adsorption Spectrometer. Pollution parameters such as enrichment factor, contamination factor, pollution load index and geo-accumulation index were evaluated. The result of heavy metal analysis showed that, the concentration (ppm) of the metals in water samples ranged as follows: Pb(0.25-0.50), Hg(0.00-2.00), Ni(0.10-0.31), Cu(0.03-0.13), Cr(0.00-1.33), Zn(0.01-0.04), Mn(0.03-0.06) and Fe(105.15-118.75) respectively. This result when compared with the EPA maximum permissible limits for drinking water showed that, all the metals except Cu and Zn had values above the permissible limits. The evaluation of enrichment factor revealed that, Hg showed extremely high enrichment while Pb showed significant enrichment for Algae, water and sediment samples. The contamination factor showed low contamination for all metals except Hg which showed considerable contamination for sediments, water and Algae samples. The pollution load index for sediments, water and Algae indicated no pollution. The geo-accumulation index of the metals in sediments, water and Algae indicates no or minimal pollution. The samples were enriched with Hg and Pb. These metals are capable of causing various types of cancer, brain and kidney damage among other ailments.


2021 ◽  
Vol 19 (2) ◽  
pp. 84-93
Author(s):  
S.Sh. Mammadzada ◽  
◽  
F.Y. Humbatov ◽  
I.I. Mustafayev ◽  
◽  
...  

Concentration of metals in water and sediment samples from Goranchay River was examined to obtain information about metal pollution. Also, 6 surface sediments and water samples were collected from sampling points and analyzed for metals (Na, K, Mg, Ca, Al, Cr, Mn, Fe, Ni, Co, Cu, Zn, As, Cd, Sr, Ba, Pb) using Varian model Spectra AA 220 FS atomic absorption spectrometer. The average concentration of examined metals at the same sampling locations was in line with the order of Ca>Fe>Mg>K>Na>Mn>V>Zn>Ni>Cr>Cu>Co>Pb in sediment samples. Single element pollution index values, including geo-accumulation index (Igeo), contamination factor (CF) and enrichment factor (EF), were used to evaluate contamination with metals in the examined sediment samples.


2019 ◽  
Vol 7 (SI-TeMIC18) ◽  
Author(s):  
Wan Noni Afida Ab Manan Ab Manan ◽  
Rubaiyah Alias ◽  
Nor Aimuni Syahirah Che Aziz ◽  
Rusdin Laiman

This study was conducted at Felda Jengka 8, Pahang in Malaysia to find out the contents of heavy metals in palm oil soil and fruit farm soil adjacent to estimate the pollution level. Four types of selected heavy metals namely Cu, Zn, Pb and Ni in different soil sampling point were collected in triplicates and analysed by Inductively Coupled Plasma – Optical Emission Spectrometer (ICP-OES) after wet digestion. Contamination factor (CF) and geo-accumulation index (Igeo) were used to estimate the degree of contamination heavy metal in soil. Heavy metal concentration range were as follow; 0.910 – 2.000 mg/kg for Cu, 0.460 – 2.060 mg/kg for Zn, 0.080 – 0.220 mg/kg for Pb and 0.020 – 0.100 mg/kg for Ni. Cu and Zn concentration was found to be higher than other metal concentrations. The continuous application of chemical fertilizers possibly related to accumulation of heavy metals in soil. Results showed CF values were between moderate to considerable contaminant especially in palm oil soil. While, for Igeo values were indicated uncontaminated to fairly contaminated for the study sites. This recommends the utilization of chemical fertilizer is still in the monitoring. However, more physicochemical analyses are needed for metal analysis and determination of other heavy metal elements such as Cd, As, Se and Cr for further research. Keywords: Chemical Fertilizer, Contamination Factor, Geo-accumulation Index, Heavy Metal


2017 ◽  
Vol 14 (3-4) ◽  
Author(s):  
Nusreta Djonlagic

In this study the results of a 15-year long monitoring survey on heavy metals in water at Lake Modrac were assessed using pollution indices of heavy metals, such as Heavy metal pollution index HPI, Heavy metal evaluation index HEI and the Degree of contamination CD. The results of the survey on heavy metal pollution of sediment conducted in 2015 were used as input data for the following pollution indices: Concentration factor , Pollution load index PLI, Enrichment factor EF, Index of geo-accumulation Igeo, Ecological risk factor , Potential ecological risk index to the water-body, RI. The results showed a good correlation and the lake sediment was characterized as polluted. Enrichment factors and indices of geo-accumulation of heavy metals were indicated as very high enriched in the sediment, and have been identified as an anthropogenic source of pollution. Cumulative presence in the sediment is assessed through the pollution index, RI, and has been assessed as moderate ecological risk to the lake water-body. The application of pollution indices presents a valuable tool in assessing the long-term pollution status of Lake Modrac.


2015 ◽  
Vol 26 (2) ◽  
pp. 1-8 ◽  
Author(s):  
Jakub Kostecki ◽  
Andrzej Greinert ◽  
Róża Wasylewicz ◽  
Roksana Adam ◽  
Bartłomiej Garbera ◽  
...  

AbstractIn most cases, traffic pollution deposition is linear with regularities in its distribution in transect routes (canyon-type effect). The aim of this study is to identify different characteristics of heavy metal deposition on large roundabouts, which are open spaces atypical in terms of the characteristics of the air mass flow along road lanes. The study was conducted on four large roundabouts in Zielona Góra. The content of the selected elements in the tested soils was: Cd 0.54–1.22 mg·kg−1 d.m., Cu 3.60–29.3 mg·kg−1 d.m., Cr 2.17–4.63 mg·kg−1 d.m., Zn 26.6–89.9 mg·kg−1 d.m., Pb 10.9–75.4 mg·kg−1 d.m. The geo-accumulation index was also calculated. The threshold values for communication areas were not exceeded, and the content of the elements was generally comparable between the roundabouts. However, we found some differences within particular roundabouts.


2021 ◽  
Vol 9 (6) ◽  
pp. 813-822
Author(s):  
Serine OMRANIA ◽  
Najib EL KHODRANI ◽  
Mbark LAHMAR ◽  
Ahmed DOUAIK ◽  
Hamza IAAICH ◽  
...  

M’nasra region is well known for increasing levels of heavy metal pollution in the environment, mainly due to waste discharge of Ouled Berjal, the irrational use of fertilizers, and the discharge of waste from several industries. The objective of this study was to access the seasonal variations in the groundwater and soil quality with respect to heavy metal pollution. Water samples from wells and samples from soil near them were taken during wet (January - March 2017) and dry (July 2017) seasons and concentrations of Cd, Cu, Cr, Mn, Ni, Pb, and Zn were determined using an Atomic Absorption Spectrophotometer (AAS). Contamination factor for each heavy metal and Nemerow pollution index was calculated. Results of the study revealed a decrease in pollution degree from wet to dry for soil and an increase in the case of groundwater. Cu had the lowest and Ni had the highest concentration in irrigation water whereas, for soil, Cd had the lowest and Zn had the highest concentration. During the wet season, all the concentrations of heavy metals decreased compared to the dry season, this can be explained by the dilution of these concentrations by precipitation water and therefore to lower absorption of these heavy metals in the water of irrigations and/or soil. Vertical transfer of pollutants from topsoil to groundwater was assessed using Hierarchical Cluster Analysis to identify associations between heavy metals and soil texture. In the case of Ni and Cr, the variables corresponding to the concentrations from soil and groundwater were part of the same cluster, in both seasons, the distribution maps of concentrations confirmed the pattern of transfer. This study can be considered as a baseline for the seasonal variation of heavy metal pollution of groundwater and soil. This study can be used not only for monitoring the study area but also as a tool for the implementation of environmental protection policies.


DEPIK ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 403-410
Author(s):  
Edward Edward

Contamination and pollution of heavy metals in the bottom sediment can pose serious issues to marine organisms and human health. Jakarta Bay which is located adjacent to the capital city of Indonesia is notorious for its pollution problems. The purpose of this research was to assest the contamination levels of heavy metals Hg, Pb, and Cd in sea-bottom sediments based on an index analysis approach (contamination factors, geo accumulation index, pollution load index). Sediment samples were collected from 31 stations in Jakarta Bay. Heavy metal concentration was measured using Atomic Absorption Spectrophotometer (AAS). The results showed that an average mercury (Hg) concentration ranged from 0.150 to 0.530 µg.g-1 with an total average of 0.362 µg.g-1, Lead (Pb) from 14.870 to 35.650 µg.g-1 with an total average of 21.774 µg.g-1, Cadmium (Cd) 0.110-0.280 µg.g-1 with an total average of 0.190 µg.g-1.The average concentration of Hg, Pb, and Cd is still lower than the sediment quality threshold values set by the Office of the State Minister of Environment of Indonesia  2010. The results of the index analysis showed that the average value of contamination factor (CF) are Hg 0.685, Pb 0.558, and Cd 0.380 respectively (low contamination) and geo accumulation index values are Hg 0.237, Pb -1.655, and Cd 0.069 respectively (unpolluted to moderate polluted). Overall, based on the pollution load index value is -0,511 (PLI 1), sediments in these waters are categorized as not yet polluted by Hg, Pb and Cd. This situation  is so necessary to be maintained, that in order for the preservation of marine resources will remain.Keywords: Jakarta Bay, sediment, pollution, heavy metals, assessmentABSTRAKKontaminasi dan pencemaran logam berat pada sedimen dasar dapat menimbulkan masalah yang serius bagi biota laut dan kesehatan manusia. Teluk Jakarta yang terletak berdekatan dengan ibu kota Indonesia terkenal karena masalah pencemarannya yang parah. Tujuan penelitian ini adalah untuk menilai tingkat kontaminasi logam berat Hg, Pb dan Cd dalam sedimen dasar laut berdasarkan pendekatan analisis indeks. Contoh sedimen diambil dari 31 stasiun penelitian di Teluk Jakarta. Kadar logam berat diukur dengan alat Spektrofometer Penyerapan Atom. Hasil penelitian menunjukkan kadar Hg rerata berkisar 0,150-0,530 µg. g-1 dengan rerata total 0,362 µg. g-1, Timbal (Pb) 14,870-35,650 µg. g-1 dengan rerata total 21,774 µg. g-1, Kadmium (Cd) 0,110-0,280 µg. g-1 dengan rerata total 0,190 µg.g-1. Kadar rerata Hg, Pb dan Cd masih lebih rendah dari nilai ambang batas kualitas sedimen yang ditetapkan oleh Kantor Menteri Negara Lingkungan Hidup Indonesia 2010. Hasil analisis indeks menunjukkan nilai rerata faktor kontaminasi (CF) berturut-turut adalah Hg 0,685, Pb 0,352 dan Cd 0,380 (kontaminasi rendah) dan nilai indeks geo akumulasi berturut-turut adalah Hg 0,227, Pb 1,098 dan Cd 0,633 (tidak tercemar sampai tercemar sedang). Secara keseluruhan, berdasarkan nilai indeks beban pencemaran yakni -3.772 (PLI 1), sedimen di perairan ini termasuk kategori belum tercemar oleh Hg, Pb dan Cd. Keadaan ini perlu dipertahankan, agar kelestarian sumberdaya laut tetap terjaga.Kata kunci: Teluk Jakarta, sedimen, pencemaran, logam berat, penilaian


Author(s):  
Samitha K. A. ◽  

Agriculture plays an important role in the sustainable development of the country. Use of chemical fertilizers escalate certain components in excess quantity thereby deteriorate the productivity and leads to unpredicted outcome. This study makes an effort to reckon the accumulation of some selected heavy metals [Lead (Pb), Nickel (Ni) and Cadmium(Cd)] and related indices [bio concentration factor(BCF) and translocation factor (TF)] from roots, leaves and fruits of pineapple plantations in Ernakulam district. Contamination factor(CF), enrichment factor(EF) and geo accumulation index (Igeo) disclose the extent of soil contamination in the pineapple cultivated regions of Ernakulam district. Root to shoot TF derived for Pb, Ni, and Cd were 0.25, 0.733 and 0.6731. TF of Pb, Ni and Cd from root to fruit was 0, 0.5 and 0.195 respectively. Values obtained for BCF of Pb, Ni and Cd in root of the pineapple plant were 0.2013,0.5758 and 0.3288. In pineapple leaves BCF showed the values 0.0503, 0.4222 and 0.2214 by Pb, Ni and Cd. Pineapple fruit showed BCF values Zero, 0.2879 and 0.0641 for Pb, Ni and Cd. Enrichment factor for Pb, Ni and Cd in pineapple cultivated areas comes under the value 4.2, 3.7 and 2.8 respectively. Furthermore, the contamination factor of Pb, Ni and Cd was 9.93, 8.26 and 6.23, respectively. The values of geo accumulation index obtained for different heavy metals pass on that the degree of pollution with respect to Pb (6.621) was very strong and extremely contaminated, heavily to extremely contaminated for Ni (5.513) and Cd (4.15).


Author(s):  
Muhammad Irfan Ahamad ◽  
Jinxi Song ◽  
Haotian Sun ◽  
Xinxin Wang ◽  
Muhammad Sajid Mehmood ◽  
...  

The sediment pollution caused by different metals has attracted a great deal of attention because of the toxicity, persistence, and bio-accumulation. This study focuses on heavy metals in the hyporheic sediment of the Weihe River, China. Contamination levels of metals were examined by using “geo-accumulation index, enrichment factor, and contamination factor” while ecological risk of metals were determined by “potential ecological risk and risk index”. The pollutant accumulation of metals ranked as follows: “manganese (Mn)   >   chromium (Cr)   >   zinc (Zn)   > copper (Cu)   >   nickel (Ni)   >   arsenic (As)   >   lead (Pb)”. The geo-accumulation index identified arsenic as class 1 (uncontaminated to moderate contamination), whereas Cu, Cr, Ni, Zn, Pb, and Mn were classified as class 0 (uncontaminated). According to the enrichment factor, arsenic originated through anthropogenic activities and Cr, Ni, Cu, Zn, and Pb were mainly controlled by natural sources. The contamination factor elucidated that sediments were moderately polluted by (As, Cr, Cu, Zn, Mn, and Pb), whereas Ni slightly contaminated the sediments of the Weihe River. All metals posed a low ecological risk in the study area. The risk index revealed that contribution of arsenic (53.43 %) was higher than half of the total risk.


Sign in / Sign up

Export Citation Format

Share Document