geo accumulation index
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 40)

H-INDEX

6
(FIVE YEARS 3)

2022 ◽  
Vol 14 (2) ◽  
pp. 919
Author(s):  
Hyeryeong Jeong ◽  
Kongtae Ra

Pollution characteristics and ecological risks for metals in non-magnetic and magnetic road dust from steel industrial areas were investigated by applying a magnetic separation method. Metal (except for Al, Li, Ti, As, and Sb) concentrations in the magnetic road dust were 1.2 (Sn) to 7.8 (Fe) times higher than those in the non-magnetic road dust. For the magnetic road dust, the geo-accumulation index revealed a strongly to extremely polluted status for Cr, Zn, Cd, and Sb, a strongly polluted status for Mn, Cu, and Pb, and a moderately to strongly polluted status for Fe, Ni, Mo, and Hg. This result indicates that the dominant metal pollution sources of road dust in industrial areas were the traffic activities of heavy-duty vehicles. The mean content of magnetic particles accounted for 44.7% of the total road dust. The metal loadings in the magnetic road dust were 86% (Fe), 77% (Cr), 67% (Mn), 86% (Ni), 76% (Cu), 72% (Zn), 64% (Mo), and 62% (Cd), respectively. Removal of the magnetic fraction from road dust using magnetic separation techniques not only reduces metal contamination but can also improve effective road cleaning strategies or reduce waste generation.


2021 ◽  
Vol 22 (2) ◽  
pp. 358-366
Author(s):  
Aziz Ur Rahman ◽  
Haq Nawaz Abbasi ◽  
Muhammad Owais

Freshwater consumption has been increased because of population growth and economic development. At the same time, depletion and contamination of groundwater is subject of great concern. Karachi is the industrial hub and serves as the economic backbone of Pakistan. The research aims to investigate the heavy metal pollution in the groundwater of Korangi Industrial Area, one of the largest industrial estates in Karachi. Eighteen representative locations were selected to collect groundwater samples and study the concentrations of heavy metals Cr, Fe, Ni, Cu, Zn, and Pb. Pollution load index, Nemerow's pollution index, and geo accumulation index approaches were used to interpret the basic data. The average concentrations of the measured heavy metals were 354.67 µg.L-1 , 694.33 µg.L-1 , 39.2 µg.L-1 , 12.89 µg.L-1 , 9.5 µg.L-1 , and 6.17 µg.L-1 for Fe, Zn, Cu, Pb, Cr, and Ni, respectively. The results showed that groundwater quality in the study area is poor and mainly contaminated by Pb and Fe.


2021 ◽  
Vol 8 (4) ◽  
pp. 319-327
Author(s):  
Amir Javid ◽  
Alireza Nasiri ◽  
Hakimeh Mahdizadeh ◽  
Seyed Mojtaba Momtaz ◽  
Mahdieh Azizian ◽  
...  

Background: Urban and industrial development has increased the concentration of heavy metals in various environments, and also, increased their amount in dust fall particles. The aim of this study was to determine and assess the risk of heavy metals in air dust fall particles. Methods: Sampling of air dust fall particles was performed using the British model Dust Fall Jar devices. Heavy metals concentrations in the samples were determined using an atomic absorption spectrometer device. Then, the risk assessment of heavy metals in air dust fall was calculated by three indicators including enrichment factor (EF), geo-accumulation index (Igeo), and integrated pollution index (IPI). Data were analyzed using descriptive statistics and Excel 2016 software. Results: Zn was the most abundant heavy metal. The results of EF index showed that the highest degree of enrichment of dust fall particles with heavy metals is related to Ag and the lowest one is related to Cr. Also, the changes of Mean of both Igeo and IP indicators were as Ag > Pb > Zn > Cd > Cu > Co > Cr. Conclusion: According to the results, it can be concluded that Cr metal is originated from the earth and other metals are of man-made origin and are mainly due to the emissions of vehicles and industries. Also, on average, the samples had very low pollution in relation to all metals. Although the amount of pollution caused by heavy metals has not exceeded the allowable limits, but considering industrial development programs in the region, continuous measures to control air pollution caused by industries, are absolutely necessary.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1548
Author(s):  
Van-Truc Nguyen ◽  
Nguyen Duy Dat ◽  
Thi-Dieu-Hien Vo ◽  
Duy-Hieu Nguyen ◽  
Thanh-Binh Nguyen ◽  
...  

The present study focused on investigating the contamination and risk assessment for 16 metals in street dust from Ha Noi highway, Ho Chi Minh City. The results indicated that the concentrations of metals (mg/kg) were found, in decreasing order, to be Ti (676.3 ± 155.4) > Zn (519.2 ± 318.9) > Mn (426.6 ±113.1) > Cu (144.7 ± 61.5) > Cr (81.4 ± 22.6) > Pb (52.2 ± 22.9) > V (35.5 ± 5.6) > Ni (30.9 ± 9.5) > Co (8.3 ± 1.2) > As (8.3 ± 2.5) > Sn (7.0 ± 3.6) > B (5.7 ± 0.9) > Mo (4.1 ± 1.7) > Sb (0.8 ± 0.3) > Cd (0.6 ± 0.2) > Se (0.4 ± 0.1). The geo-accumulation index (Igeo) showed moderate contamination levels for Pb, Cd, Cu, Sn, Mo, and Zn. The enrichment factor (EF) values revealed moderate levels for Cd, Cu, Mo, and Sn but moderate–severe levels for Zn. The pollution load index of the heavy metals was moderate. The potential ecological risk (207.43) showed a high potential. Notably, 40.7% and 33.5% of the ecological risks were contributed by Zn and Mn, respectively. These findings are expected to provide useful information to decision-makers about environmental quality control strategies.


Author(s):  
Yebpella G.G ◽  
Magomya A.M ◽  
Hikon B.N ◽  
Joshua Y ◽  
Gani J

Heavy metals accumulation in biological system are by inhalation of contaminated air, intake of contaminated food or drinking water has been considered to be an ecological menace to man and other organisms. This study was carried out to ascertain the pollution status of Cr, Pb, Zn, Cu and Cd in sediment of Akata Lake, Katsina- Ala Benue State, Nigeria. Sediment samples were collected, digested using 30% H2O2 followed by 0.5M HCl and the metal concentrations were determined with Varian AA240 Atomic absorption spectrophotometer equipped with Zeeman’s background correction (Varian, New Jersey, USA). The mean level of the heavy metals, Pb, Zn, Cu, Cd and Cr are 31.05, 2.72, 19.22 and 0.88 mg/kg while the concentration of Cr was below the detection limit of the instrument. The values obtained were compared with the established soil and sediment standard by World Health Organization (WHO). The contamination factors value for Zn, Cu and Cd are <1 while that of Pb is >1, hence it shows that the sediment is polluted by lead. The pollution load index (PLI) and Geo-accumulation index (Igeo) levels for Cr, Zn, Cu, Cd heavy metals in sample A - E were less than 1 except for Pb which is >1, this show that, the sediment were polluted with Pb.


2021 ◽  
Vol 15 (3) ◽  
pp. 1249-1263
Author(s):  
O.B.M. Lucinde Bocodaho ◽  
Waris Kéwouyèmi Chouti ◽  
R. Arthur Cakpo ◽  
Daouda Mama

The uncontrollable population growth is reaching Benin's rivers, especially the coastal lagoon, raising then the thorny problem of pollution, which is considerably accentuated by the malevolent behavior of the populations. The aim of this paper is to characterize the degree of contamination of the water and sediments of the lagoon in heavy metals (Cd, Cr, Zn, Cu, Pb and Fe) through the dosage with the molecular absorption spectrophotometer type DR 3900. At the same time, a cytotoxicity test with Allium cepa will be carried out in order to evaluate the toxic potential of the pollutants responsible for the degradation of the lagoon. The Cd, Cu and Zn contents in the water and sediments far exceed the accepted standards at almost all the stations. The Pollution Index (PI) and geo-accumulation index (Igeo) indicate the existence of polymetallic pollution in the sediments, which is extremely strong and dominated in order to decrease abundance by: Cd>Zn>Cu>Pb. The results of the cytotoxicity test highlight acute toxicity on 82% of the stations surveyed. The poor states of the coastal lagoon indexed by this study, impose the application of urgent measures of participative management, preservation and sanitation of the coastal zone


2021 ◽  
Vol 9 (8) ◽  
pp. 899
Author(s):  
Ammar A. Mannaa ◽  
Athar Ali Khan ◽  
Rabea Haredy ◽  
Aaid G. Al-Zubieri

The Al-Salam Lagoon is one of the recreational sites along the Jeddah coast, showing the environmental impacts of urbanization along the coast. A sediment core (220 cm) was collected from the intertidal zone to evaluate the heavy metals (Fe, Mn, Cr, Ni, Cu, Zn, and Pb) and geochemical indices (contamination factor, geo-accumulation index, and pollution load index). In the organ-ic-rich muddy sediments (0–100 cm), there is a high metals content and a pollution load index of ~3, indicting anthropogenic impacts with high Cu contamination (CF:12) and moderate Fe, Mn, Cr, Ni, Zn, and Pb contamination (CF: <3). The organic matter and heavy metals washed through surface run-off from the land and deposited as urban waste. Down the core, consistent metals concentration, CF, and Igeo trends indicate a common pollutant source and pollution load variations over time. In the sediment section (70–40 cm), a high organic matter, metal concentration, CF, Igeo, and PLI value (≥5) suggest an uncontrolled pollution load. The decreased and stable trends of environmental indicators toward surface sediments suggest measures taken to control the pollution along the Jeddah coast. Below 110 cm, the carbonate-rich sediments have low organic matter and metals, showing an unpolluted depositional environment. The negative geo-accumulation index implies a geogenic source and indicates no anthropogenic impacts as inferred from low (~1.0) CF and PLI.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 650
Author(s):  
Faustino Dinis ◽  
Hongyan Liu ◽  
Qingdong Liu ◽  
Xuewen Wang ◽  
Meng Xu

The background value of cadmium (Cd) in soil and water sediments in the karst area is 0.31 mg kg−1, with a typical high background of cadmium geochemistry. It is well-known that Cd is classified as a highly toxic metal. Therefore, at the Yelang reservoir in Guizhou province, eco-toxicological tests were carried out using Daphnia pulex. The Geo-Accumulation Index and Potential Ecological Risk Index were used to assess the environmental risk of Cd in sediments. The Cd contents in the sediments of Yelang reservoir ranged from 2.51 to 5.23 mg kg−1, while the LC50 values of the acute toxicity test of Daphnia pulex and Cd at 24, 48, 72, and 96 h were 1.17, 0.50, 0.24, and 0.12 mg L−1, respectively, giving a Safe Concentration threshold of Cd of 1.20 × 10−3 mg L−1 in the water body. Based on curve fitting the solid–liquid two-phase distribution model of cadmium in Yelang reservoir was Y = 7.59 × 10−9 × X2.58 (R2 = 0.9995). The safety threshold sediment Cd concentration was 103 mg kg−1, and was much higher than the Cd content in the sediment of the Yelang reservoir. The Geo-Accumulation Index (Igeo 2.432–3.491) results show that the sediments had reached medium-strong or strong risk levels. The Potential Ecological Risk Index (Eri 242.8–505.9) reached a very high or extremely high-risk level. However, due to high concentrations of Ca2+ and Mg2+, and the pH being in the neutral–alkaline range of water body in karst areas, the Daphnia ecotoxicology evaluation method showed slight ecological risk, quite different from other assessment results, thus this method could be considered to use in such areas.


Author(s):  
Samitha K. A. ◽  

Agriculture plays an important role in the sustainable development of the country. Use of chemical fertilizers escalate certain components in excess quantity thereby deteriorate the productivity and leads to unpredicted outcome. This study makes an effort to reckon the accumulation of some selected heavy metals [Lead (Pb), Nickel (Ni) and Cadmium(Cd)] and related indices [bio concentration factor(BCF) and translocation factor (TF)] from roots, leaves and fruits of pineapple plantations in Ernakulam district. Contamination factor(CF), enrichment factor(EF) and geo accumulation index (Igeo) disclose the extent of soil contamination in the pineapple cultivated regions of Ernakulam district. Root to shoot TF derived for Pb, Ni, and Cd were 0.25, 0.733 and 0.6731. TF of Pb, Ni and Cd from root to fruit was 0, 0.5 and 0.195 respectively. Values obtained for BCF of Pb, Ni and Cd in root of the pineapple plant were 0.2013,0.5758 and 0.3288. In pineapple leaves BCF showed the values 0.0503, 0.4222 and 0.2214 by Pb, Ni and Cd. Pineapple fruit showed BCF values Zero, 0.2879 and 0.0641 for Pb, Ni and Cd. Enrichment factor for Pb, Ni and Cd in pineapple cultivated areas comes under the value 4.2, 3.7 and 2.8 respectively. Furthermore, the contamination factor of Pb, Ni and Cd was 9.93, 8.26 and 6.23, respectively. The values of geo accumulation index obtained for different heavy metals pass on that the degree of pollution with respect to Pb (6.621) was very strong and extremely contaminated, heavily to extremely contaminated for Ni (5.513) and Cd (4.15).


2021 ◽  
Author(s):  
Germán Flor-Blanco ◽  
Efrén García-Ordiales ◽  
Raul Ruiz-Quesada ◽  
Luis Pando ◽  
Germán Flor

&lt;p&gt;The sedimentological and geochemical evolution of the internal platform located in front of the Llumeres cove (Asturias, North of Spain) has been studied, based on the analysis of selected sediment samples from 5 long corers, approximately 2 m thick, recovered for an offshore structures installation project. In each sample, a granulometric characterization has been carried out by the calculation of granulometric parameters (centile, mean, shorting, etc.) and the mineralogical composition (silica/biogenic carbonates). Geochemical analysis has also been made in the samples.&amp;#160; The enrichment of selected heavy metals and metalloids (Zn, As, Cu, Pb and Hg) has been studied, applying the Geo-accumulation Index (Igeo) and the Enrichment Factor (EF). The results have also been subjected to multivariate and bivariate statistical analyzes that have allowed establishing the relationships between the elements and determining in a preliminary way their potential origin.&lt;/p&gt;&lt;p&gt;The sedimentological results point to the fact that the sediment was incorporated into the internal platform during the last stages of the sea level rise, which began some 20,000 years ago (Pleisto-Holocene transgression). At present, the zone enjoys stability, since no sedimentation is detected. These sediments are relict, without existing agreement with the siliciclastic sedimentation that is taking place at the moment in the coastal zone (Llumeres beach). Three main sandy lithologies have been analyzed: siliciclastic, mixed and carbonate sands which are distributed irregularly in the vertical. This is indicative of changes in the origin of the sediment (siliciclastic, due to the coastal drift current and bioclastic, typical from the platform), as well as the energy of the depositional agent with a clear decrease in size towards the top, detecting relatively large variations in size and the coarse sediments would correspond to moments of storm.&lt;/p&gt;&lt;p&gt;The geochemical results show that the area does not have a remarkable anthropic condition along the sedimentological profile. However, enrichment of some potential contaminants was detected in the more recent sediments (first centimeters of the boreholes), but the enrichment does not appear to pose an environmental risk and their origin seem to be related to nearby areas such as the Nal&amp;#243;n River or the industrial area of Aviles that may export contaminants to the marine environment.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document