scholarly journals The Methodologies Adopted To Improve the Machinability in Die-Sinking EDM

Electrical discharge machining (EDM) is one of the oldest nontraditional machining processes, commonly used in automotive, aerospace and ship building industries for machining metals that have high hardness, strength and to make complicated shapes that cannot be produced by traditional machining techniques. The process is based on the thermoelectric energy between the work piece and an electrode. EDM is slow compared to conventional machining, low material removal rate, high surface roughness, high tool wear and formation of recast layer are the main disadvantages of the process. Tool wear rate, material removal rate and surface quality are important performance measures in electric discharge machining process. Numbers of ways are explored by researchers for improving and optimizing the output responses of EDM process. The paper summarizes the research on die-sinking EDM relating to the improvements in the output response.

Author(s):  
S. Nallusamy

Electrical Discharge Machining is a machining method primarily used for hard metals or those that are impossible to be machined with traditional techniques. The experimental investigation of material removal rate and tool wear rate during machining of oil hardened non-shrinking steel with brass and copper electrodes using EDM machine was carried out in this paper. This investigation presents the analysis and evaluation of heat affected zones and surface finish of the work piece using different tool electrodes and varying the machine parameters. The commercial grade kerosene oil has been used as dielectric fluid. The effect of various important EDM parameters such as discharge current (Ip) 2 to12A, pulse duration (Ton and Toff) and sparking voltage (V) of 80±5% have been used to yield the response in terms of Material Removal Rate (MRR) and Tool Wear Rate (TWR). Further a detailed analysis of the heat affected regions was also been carried out by using scanning electron microscopy.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 164
Author(s):  
Panagiotis Karmiris-Obratański ◽  
Emmanouil L. Papazoglou ◽  
Beata Leszczyńska-Madej ◽  
Krzysztof Zagórski ◽  
Angelos P. Markopoulos

Electrical Discharge Machining (EDM) is a non-traditional cutting technology that is extensively utilized in contemporary industry, particularly for machining difficult-to-cut materials. EDM may be used to create complicated forms and geometries with great dimensional precision. Titanium alloys are widely used in high-end applications owing to their unique intrinsic characteristics. Nonetheless, they have low machinability. The current paper includes an experimental examination of EDM’s Ti-6Al-4V ELI (Extra Low Interstitials through controlled interstitial element levels) process utilizing a graphite electrode. The pulse-on current (IP) and pulse-on time (Ton) were used as control parameters, and machining performance was measured in terms of Material Removal Rate (MRR), Tool Material Removal Rate (TMRR), and Tool Wear Ratio (TWR). The Surface Roughness (SR) was estimated based on the mean roughness (SRa) and maximum peak to valley height (SRz), while, the EDMed surfaces were also examined using optical and SEM microscopy and cross-sections to determine the Average White Layer Thickness (AWLT). Finally, for the indices above, Analysis of Variance (ANOVA) was conducted, whilst semi-empirical correlations for the MRR and TMRR were given using the Response Surface Method (RSM). The results show that the pulse-on time is the most significant parameter of the machining process that may increase the MRR up to 354%. Pulse-on current and pulse-on time are shown to have an impact on the surface integrity of the finished product. Furthermore, statistics, SEM, and EDX images on material removal efficiency and tool wear rate are offered to support the core causes of surface and sub-surface damage. The average microhardness of the White Layer (WL) is 1786 HV.


The traditional machining consists of a specific contact between the tool and work piece. As a result of this contact the tool may wear out after a few operations. In addition to that, the MRR (Material Removal Rate), Surface Finish, etc. is also lowered. As a result of these drawbacks, traditional or conventional machining processes cannot be used to machine ceramic based alloys and thus we opt for unconventional machining process. The Electrical Discharge Machine contains of two spaces one is Electrode and other is Work piece. In this concept the among the tool wear rate is moderate and the surface roughness is to be poor. The tool cost is so high. Hence continuously tool modification is not possible. So in the work main objective of the problem is reduced the tool wear rate and increase the MRR. (Material removal rate). So in the case we are consider in the surface roughness. The surface roughness is to be high is the taken in industrial application. So we have focus with surface roughness. These are the considering with in our problems. In our aim is reducing the toll wear and improve the Material Remove rate. In order to addition of graphite in Electrolyte. When added the electrolyte in Graphite the Toll wear rate decrease and increase a material Removal Rate. Finally we have disc the DOE process


2013 ◽  
Vol 7 (5) ◽  
pp. 581-592
Author(s):  
Raoul Roth ◽  
◽  
Beck Lukas ◽  
Hartmi Balzer ◽  
Friedrich Kuster ◽  
...  

In the last years dry electrical discharge machining (DEDM) has been proposed as an alternative to the traditional EDM. The main reason for these efforts is the absence of a liquid dielectric which results in a simpler and environmentally friendly process. This paper presents measurements of the material removal rate in function of different tool electrodes, work piece materials and flushing gases put in relation with the breakdown behavior of the process. Evaluation of absolute and current specific material removal rate are presented. The data show a big influence on the material removal rate depending on the combination of work piece material and flushing gas. Two different effects are observed, the first enhancing the removal per spark and the second one reducing the short circuiting occurrence. The share of these two effects on the enhancing of the absolute material removal rate also differs in function of the work piece material. It is suggested that the chemical reaction strongly influences the process in two different ways, on one hand releasing a surplus of energy and on the other hand changing the debris particles’ properties.


2015 ◽  
Vol 77 (21) ◽  
Author(s):  
Maidin S. ◽  
H.H. El Grour ◽  
Seeying C.

The electrical discharge machining (EDM) is one of non - conventional machining process where the erosion of the work piece take place based on the thermal energy between the electrode and the work piece. Due to the widely used and its availability, copper and aluminium was used in this study. These two materials was machined using die sinking EDM to study the characteristics of each material using copper electrode. Few research has been conducted to study copper electrode to machined copper work piece and this was considered as a challenge in this research. More heat was generated and more time consumed was the reason behind machining small depth in this research. The important factors such as discharge current, voltage, pulse on time and pulse off time monitored and recorded to know how these factors effect on the Material Removal Rate (MRR) and Tool Wear Ratio (TWR) of the copper and aluminium work piece material. The experiments conducted under the designed full factorial procedure where pulse on-time and pulse current are used as the input parameters. It was found that material MRR increases with increase in current and pulse duration, but MRR is higher during machining of aluminum than that of copper. In term of TWR it is found that the TWR resulting of machining copper is lower than aluminium


2020 ◽  
Vol 38 (9A) ◽  
pp. 1406-1413
Author(s):  
Yousif Q. Laibia ◽  
Saad K. Shather

Electrical discharge machining (EDM) is one of the most common non-traditional processes for the manufacture of high precision parts and complex shapes. The EDM process depends on the heat energy between the work material and the tool electrode. This study focused on the material removal rate (MRR), the surface roughness, and tool wear in a 304 stainless steel EDM. The composite electrode consisted of copper (Cu) and silicon carbide (SiC). The current effects imposed on the working material, as well as the pulses that change over time during the experiment. When the current used is (8, 5, 3, 2, 1.5) A, the pulse time used is (12, 25) μs and the size of the space used is (1) mm. Optimum surface roughness under a current of 1.5 A and the pulse time of 25 μs with a maximum MRR of 8 A and the pulse duration of 25 μs.


Author(s):  
Gurpreet Singh ◽  
DR Prajapati ◽  
PS Satsangi

The micro-electrical discharge machining process is hindered by low material removal rate and low surface quality, which bound its capability. The assistance of ultrasonic vibration and magnetic pulling force in micro-electrical discharge machining helps to overcome this limitation and increase the stability of the machining process. In the present research, an attempt has been made on Taguchi based GRA optimization for µEDM assisted with ultrasonic vibration and magnetic pulling force while µEDM of SKD-5 die steel with the tubular copper electrode. The process parameters such as ultrasonic vibration, magnetic pulling force, tool rotation, energy and feed rate have been chosen as process variables. Material removal rate and taper of the feature have been selected as response measures. From the experimental study, it has been found that response output measures have been significantly improved by 18% as compared to non assisted µEDM. The best optimal combination of input parameters for improved performance measures were recorded as machining with ultrasonic vibration (U1), 0.25 kgf of magnetic pulling force (M1), 600 rpm of tool rotation (R2), 3.38 mJ of energy (E3) and 1.5 mm/min of Tool feed rate (F3). The confirmation trail was also carried out for the validation of the results attained by Grey Relational Analysis and confirmed that there is a substantial improvement with both assistance applied simultaneously.


Author(s):  
Sagil James ◽  
Sharadkumar Kakadiya

Shape Memory Alloys are smart materials that tend to remember and return to its original shape when subjected to deformation. These materials find numerous applications in robotics, automotive and biomedical industries. Micromachining of SMAs is often a considerable challenge using conventional machining processes. Micro-Electrical Discharge Machining is a combination of thermal and electrical processes, which can machine any electrically conductive material at micron scale independent of its hardness. It employs dielectric medium such as hydrocarbon oils, deionized water, and kerosene. Using liquid dielectrics has adverse effects on the machined surface causing cracking, white layer deposition, and irregular surface finish. These limitations can be minimized by using a dry dielectric medium such as air or nitrogen gas. This research involves the experimental study of micromachining of Shape Memory Alloys using dry Micro-Electrical Discharge Machining process. The study considers the effect of critical process parameters including discharge voltage and discharge current on the material removal rate and the tool wear rate. A comparison study is performed between the Micro-Electrical Discharge Machining process with using the liquid as well as air as the dielectric medium. In this study, microcavities are successfully machined on shape memory alloys using dry Micro-Electrical Discharge Machining process. The study found that the dry Micro-Electrical Discharge Machining produces a comparatively better surface finish, has lower tool wear and lesser material removal rate compared to the process using the liquid as the dielectric medium. The results of this research could extend the industrial applications of Micro Electrical Discharge Machining processes.


2016 ◽  
Vol 40 (3) ◽  
pp. 331-349 ◽  
Author(s):  
S. Sivasankar ◽  
R. Jeyapaul

This research work concentrates on Electrical Discharge Machining (EDM) performance evaluation of ZrB2- SiC ceramic matrix composites with different tool materials at various machining parameters. Monolithic ZrB2 possesses lower relative density (98.72%) than composites. ZrB2 with 20 Vol.% of SiC possesses 99.74% of the relative density with improved hardness values. Bend strength and Young’s modulus increase with SiC addition until it reaches 20 Vol% and then decreasing. EDM performance on tool materials of tungsten, niobium, tantalum, graphite and titanium at various levels of pulse on time and pulse off time are analyzed. Graphite produces the best Material removal rate (MRR) for all the workpieces. Tool wear rate decreases with melting point and thermal conductivity of the tool material.


2021 ◽  
Author(s):  
Dragan Rodic ◽  
Marin Gostimirovic ◽  
Milenko Sekulic ◽  
Borislav Savkovic ◽  
Branko Strbac

Abstract It is well known that electrical discharge machining can be used in the processing of nonconductive materials. In order to improve the efficiency of machining modern engineering materials, existing electrical discharge machines are constantly being researched and improved or developed. The current machining of non-conductive materials is limited due to the relatively low material removal rate and high surface roughness. A possible technological improvement of electrical discharge machining can be achieved by innovations of existing processes. In this paper, a new approach for machining zirconium oxide is presented. It combines electrical discharge machining with assisting electrode and powder-mixed dielectric. The assisting electrode is used to enable electrical discharge machining of nonconductive material, while the powder-mixed dielectric is used to increase the material removal rate, reduce surface roughness, and decrease relative tool wear. The response surface method was used to generate classical mathematical models, analyzing the output performances of surface roughness, material removal rate and relative tool wear. Verification of the obtained models was performed based on a set of new experimental data. By combining these latest techniques, positive effects on machining performances are obtained. It was found that the surface roughness was reduced by 18%, the metal removal rate was increased by about 12% and the relative tool wear was reduced by up to 6% compared to electrical discharge machining with supported electrode without powder.


Sign in / Sign up

Export Citation Format

Share Document