Influence of Pulse-on-Time on the Performance of Wire Electrical Discharge Machining of Ti-6Al-4V Using Zinc Coated Brass Wire

2014 ◽  
Vol 592-594 ◽  
pp. 416-420 ◽  
Author(s):  
Singaravelu D. Lenin ◽  
A. Uthirapathi ◽  
Ramana Reddy P.S. Venkata ◽  
Muthukannan Durai Selvam

The present paper describes the influence of pulse-on-time on performance features such as Metal Removal Rate (MRR), Kerf width, Surface Roughness (SR) on cutting Titanium alloy (Ti-6Al-4V) in wire electrical discharge machining (WEDM) using zinc coated brass wire. The deionised water is used as dielectric fluid. The process parameters such as wire tension, wire speed, flushing pressure, discharge current, sparking voltage and pulse off time have kept constant at appropriate values throughout the experiment and the pulse on time is varied at nine different intervals. It was found that pulse-on-time is the most significant factor which greatly influences MRR, kerf width, and SR. It was also observed that taper at the end of cutting zone which is unavoidable occurrence for the machined part. This is due to the erosion of wire material. The surface roughness increases with increase in pulse on time also with higher rate of MRR.

Author(s):  
TS Senthilkumar ◽  
R Muralikannan ◽  
T Ramkumar ◽  
S Senthil Kumar

A substantially developed machining process, namely wire electrical discharge machining (WEDM), is used to machine complex shapes with high accuracy. This existent work investigates the optimization of the process parameters of wire electrical discharge machining, such as pulse on time ( Ton), peak current ( I), and gap voltage ( V), to analyze the output performance, such as kerf width and surface roughness, of AA 4032–TiC metal matrix composite using response surface methodology. The metal matrix composite was developed by handling the stir casting system. Response surface methodology is implemented through the Box–Behnken design to reduce experiments and design a mathematical model for the responses. The Box–Behnken design was conducted at a confident level of 99.5%, and a mathematical model was established for the responses, especially kerf width and surface roughness. Analysis of variance table was demarcated to check the cogency of the established model and determine the significant process. Surface roughness attains a maximum value at a high peak current value because high thermal energy was released, leading to poor surface finish. A validation test was directed between the predicted value and the actual value; however, the deviation is insignificant. Moreover, a confirmation test was handled for predicted and experimental values, and a minimal error was 2.3% and 2.12% for kerf width and surface roughness, respectively. Furthermore, the size of the crater, globules, microvoids, and microcracks were increased by amplifying the pulse on time.


2015 ◽  
Vol 760 ◽  
pp. 551-556 ◽  
Author(s):  
Oana Dodun ◽  
Laurenţiu Slătineanu ◽  
Margareta Coteaţă ◽  
Vasile Merticaru ◽  
Gheorghe Nagîţ

Wire electrical discharge machining is a machining method by which parts having various contours could be detached from plate workpieces. The method uses the electrical discharges developed between the workpiece and the wire tool electrode found in an axial motion, when in the work zone a dielectric fluid is recirculated. In order to highlight the influence exerted by some input process factors on the surface roughness parameter Ra in case of a workpiece made of an alloyed steel, a factorial experiment with six independent variables at two variation levels was designed and materialized. As input factors, one used the workpiece thickness, pulse on time, pulse off-time, wire axial tensile force, current intensity average amplitude defined by setting button position and travelling wire electrode speed. By mathematical processing of the experimental results, empirical models were established. Om the base of a power type empirical model, graphical representations aiming to highlight the influence of some input factors on the surface roughness parameter Ra were achieved. The power type empirical model facilitated establishing of order of factors able to exert influence on the surface roughness parameter Ra at wire electrical discharge machining.


2014 ◽  
Vol 3 (2) ◽  
pp. 212
Author(s):  
M. Durairaj ◽  
A.K.S. Ansari ◽  
M. H. Gauthamkumar

Wire Electrical Discharge Machining is a manufacturing process whereby a desired shape is obtained using electrical discharges (or) by repetitive spark cycle. Precision and intricate machining are the strengths. Machining parameters tables provided by the machine tool manufacturers often do not meet the operator requirements. Selection of optimum machining and machining parameters combinations is needed for obtaining higher cutting efficiency and accuracy. In this present study, machining is done using Wire-Cut EDM and optimization of surface roughness is done using Taguchis design of experiments. Experimentation was planned as per Taguchis L16 orthogonal array. Each experiment has been performed under different cutting conditions of gap voltage, pulse ON time, and pulse OFF time and Wire feed. Dielectric fluid pressure, wire speed, wire tension, resistance and cutting length are taken as fixed parameters. Inconel 800 was selected as a work material to conduct the experiments. From experimental results, the surface roughness was determined for each machining performance criteria. Signal to noise ratio was applied to measure the performance characteristics deviating from the actual value. Finally, experimental confirmation was carried out to identify the effectiveness of this proposed method. Keywords: Optimization; Taguchis L-16 Orthogonal Array; Surface Roughness; S/N Ratio.


2015 ◽  
Vol 766-767 ◽  
pp. 902-907
Author(s):  
Bibin K. Tharian ◽  
B. Kuriachen ◽  
Josephkunju Paul ◽  
Paul V. Elson

Wire electrical discharge machining is one of the important non-traditional machining processes for machining difficult to machine materials. It involves the removal of material by the discrete electric discharges produced between the inter electrode gap of continuously moving wire electrode and the work piece. The ability to produce intricate profiles on materials irrespective of the mechanical properties made this process to be widely used in industries. The present study investigates the relationship of various process parameters in WEDM of AISI 202 stainless steel with brass electrode.The experiments were planned according to Taguchi’s L18 orthogonal array and experimental models were developed. The important process parameters identified for the present study were pulse on time, peak current, pulse off time, wire feed, wire tension, dielectric flushing pressure, servo feed and gap voltage. The surface roughness of the machined surface was measured as the process performance measure. Analysis of variance test has also been carried out to check the adequacy of the developed models and to identify the level of significance of each process parameters. In addition to the developed models, ABC optimization has been performed to identify the optimum parameter combination for minimum surface roughness and the obtained optimal process parameters are peak current 11 A, pulse on time 100 μs, pulse off time 49 μs, wire feed 4 m/min, wire tension 10 N, flushing pressure 12 kg/cm2, servo feed 2100 mm/min and set gap voltage 30 V. Finally the results were verified with the experimental results and found that they are in good agreement.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2533
Author(s):  
Rakesh Chaudhari ◽  
Jay Vora ◽  
L.N.López de Lacalle ◽  
Sakshum Khanna ◽  
Vivek K. Patel ◽  
...  

In the current scenario of manufacturing competitiveness, it is a requirement that new technologies are implemented in order to overcome the challenges of achieving component accuracy, high quality, acceptable surface finish, an increase in the production rate, and enhanced product life with a reduced environmental impact. Along with these conventional challenges, the machining of newly developed smart materials, such as shape memory alloys, also require inputs of intelligent machining strategies. Wire electrical discharge machining (WEDM) is one of the non-traditional machining methods which is independent of the mechanical properties of the work sample and is best suited for machining nitinol shape memory alloys. Nano powder-mixed dielectric fluid for the WEDM process is one of the ways of improving the process capabilities. In the current study, Taguchi’s L16 orthogonal array was implemented to perform the experiments. Current, pulse-on time, pulse-off time, and nano-graphene powder concentration were selected as input process parameters, with material removal rate (MRR) and surface roughness (SR) as output machining characteristics for investigations. The heat transfer search (HTS) algorithm was implemented for obtaining optimal combinations of input parameters for MRR and SR. Single objective optimization showed a maximum MRR of 1.55 mm3/s, and minimum SR of 2.68 µm. The Pareto curve was generated which gives the optimal non-dominant solutions.


Author(s):  
Vineet Dubey ◽  
Anuj K Sharma ◽  
Balbir Singh

The present study establishes the optimum process condition for additive mixed electrical discharge machining of Al7075–5%B4Cp metal matrix composite by performing experimental investigation. The suspension of chromium particles in a dielectric fluid is used as an additive. The input process parameters selected for experimentation are specifically pulse on-time, gap voltage, pulse off-time and peak current, for analysing their influence on wear of the tool along with surface roughness of the composite. Comparative study of the machined surface is done by analysing microstructures, cracks and recast layers formed at different settings of input parameters using a scanning electron microscope. Rise in amount of current and pulse on-time led to increased height of the recast layer generated on the surface of the machined workpiece. Furthermore, a confirmatory experiment was performed at the optimal setting. The result revealed an error of 5.5% and 7.5% between experimental and predicted value of tool wear rate and surface roughness.


2018 ◽  
Vol 1 (1) ◽  
pp. 27-38
Author(s):  
Jun Qi Tan ◽  
Mohd Yazid Abu

The experimental carried out to aim at the selection of the best condition machining parameter combination for wire electrical discharge machining (WEDM) of titanium alloy (Ti–6Al–4V). By using Design Expert 10 software, a series of experiments were performed by selecting pulse-on time, pulse-off time, servo voltage and peak current as parameters. The responses that considered were cutting speed, material removal rate, sparking gap and surface roughness. Based on ANOVA analysis, the effect from the parameters on the responses was determined. The optimum machining parameters setting for the maximum cutting speed, minimum sparking gap and minimum surface roughness were found by proceed optimization experiment. Then, each optimization response had their own combination setting on WEDM to cut titanium alloy. 3D response surface graph such as dome and bowl shape represent maximum and minimum point for the solutions had shown in the report. Finally, predicted and actual value from the experiment have been calculated for validation.


The growing demand for the use of high strength to weight alloys in industries for manufacturing complex structures challenges the machinability of such advanced materials. In the present investigation, the machinability of SiC particle reinforced Al 2124 composite was studied on Wire electrical discharge machining (WEDM). The process parameters namely pulse on-time (Ton), pulse off time (Toff), peak current (IP), and servo voltage (SV) were optimized by utilizing the central composite design layout. The output responses such as kerf and material removal rate (MRR) were studied in detail. The single and multi-objective optimization was studied for a combination effect using Derringer’s desirability approach and Genetic Algorithm (GA). The experimental and predicted values for each response were validated at the optimized condition. The experimental results were found in line with the predicted values. Multi objective optimization of kerf and MRR by GA showing better result compared to RSM.


2018 ◽  
Vol 14 (4) ◽  
pp. 115-124 ◽  
Author(s):  
Shukry H. Aghdeab ◽  
Nareen Hafidh Obaeed ◽  
Marwa Qasim Ibraheem

Electrical Discharge Machining (EDM) is a non-traditional cutting technique for metals removing which is relied upon the basic fact that negligible tool force is produced during the machining process. Also, electrical discharge machining is used in manufacturing very hard materials that are electrically conductive. Regarding the electrical discharge machining procedure, the most significant factor of the cutting parameter is the surface roughness (Ra). Conventional try and error method is time consuming as well as high cost. The purpose of the present research is to develop a mathematical model using response graph modeling (RGM). The impact of various parameters such as (current, pulsation on time and pulsation off time) are studied on the surface roughness in the present research. 27 samples were run by using CNC-EDM machine which used for cutting steel 304 with dielectric solution of gas oil by supplied DC current values (10, 20, and 30A). Voltage of (140V) uses to cut 1.7mm thickness of the steel and use the copper electrode. The result from this work is useful to be implemented in industry to reduce the time and cost of Ra prediction. It is observed from response table and response graph that the applied current and pulse on time have the most influence parameters of surface roughness while pulse off time has less influence parameter on it. The supreme and least surface roughness, which is achieved from all the 27 experiments is (4.02 and 2.12µm), respectively. The qualitative assessment reveals that the surface roughness increases as the applied current and pulse on time increases


2014 ◽  
Vol 68 (1) ◽  
Author(s):  
Md. Ashikur Rahman Khan ◽  
M. M. Rahman

Electrical discharge machining (EDM) produces complex shapes and permits high-precision machining of any hard or difficult-to-cut materials. The performance characteristics such as surface roughness and microstructure of the machined face are influenced by numerous parameters. The selection of parameters becomes complicated. Thus, the surface roughness (Ra) and microstructure of the machined surface in EDM on Grade 6 titanium alloy are studied is this study. The experimental work is performed using copper as electrode material. The polarity of the electrode is maintained as negative. The process parameters taken into account in this study are peak current (Ip), pulse-on time (Ton), pulse-off time (Toff), and servo-voltage (Sv). A smooth surface finish is found at low pulse current, small on-time and high off-time. The servo-voltage affects the roughness diversely however, a finish surface is found at 80 V Sv. Craters, cracks and globules of debris are appeared in the microstructure of the machined part. The size and degree of craters as well as cracks increase with increasing in energy level. Low discharge energy yields an even surface. This approach helps in selecting proper process parameters resulting in economic EDM machining. 


Sign in / Sign up

Export Citation Format

Share Document