scholarly journals Efficient Management of Egg Shell and Conch Shell Wastes by Utilization as Bio- Fillers in Eco-Friendly Gypsum Mortar

The efficient waste management and recovery of waste materials are the most important goals of sustainable environmental development. The egg shells and conch shells are solid wastes being deposited in enormous amount which creates large disposal problem. In order to examine the possibility of utilizing these wastes for use in building materials the egg shell and conch shell powders were used as partial replacement for the manufacture of eco-friendly bio mortars. The mechanical characterization of the bio mortar produced by substituting finely ground egg shell and conch shell powder at various percentages were quantitatively investigated. The present research work was executed in two groups – the first group of bio mortar consists of raw egg shell and conch shell powder and the second group consists of thermally treated egg shell and conch shell powder as a partial substitute for binder. The results showed that the untreated egg shell and conch shell powder did not cause much improvement in the strength parameters of bio mortar whereas the thermally treated egg shell and conch shell substituted mortar exhibited a significant improvement in the mortar strength. The scanning electron microscopy images also reveal the denser and compact structure of mortar which supports the filling effect caused by these wastes. This improvement in strength was due to the calcite present in the egg shell and conch shell powder. The calcite traces were further confirmed by the FTIR and XRD studies. Thus the usage of these waste materials as binder reduces the manufacture of cement which minimizes the environmental pollution by mitigating the CO2 emissions.

2018 ◽  
Vol 7 (3.35) ◽  
pp. 22
Author(s):  
V. Murugesh ◽  
Dr. N. Balasundaram ◽  
Dr. T. Senthil Vadivel

Cement is the main constituent ingredient in concrete. Now days many investigations undergone for substitute of cement due to green houses effect and global warming  .Many new products like rice husk ash, egg shell powder, baggage ash, etc are used as an effluent replacement material for cement. The new and Practical material for substitute of cement is water hyacinth ash .Water hyacinth ash (WHA), is used as an effectual replacement of partial cement, and it has been proved in several characteristics of concrete. The main important parameters in concrete are strength, durability and workability. In this paper, 10 % of cement replaced by water hyacinth ash   to investigate the effects of WHA on  durability and Strength  in concretes. On this basis, specimens were engrossed in water and acid to study the absorption property, acid attack and compared to conventional concrete. The test results show that replacement of cement by WHA in concrete has improved the parameters of concrete. 


Author(s):  
Balimidi Harinath ◽  
Paladin Durga Varaprasad ◽  
Utti Lakshmi Kanth ◽  
Yerrapureddi Harikumar Reddy ◽  

2018 ◽  
Vol 7 (3.29) ◽  
pp. 75 ◽  
Author(s):  
B Vamsi Krishna ◽  
E Rakesh Reddy

The most basic and primary building material for construction of houses is the conventional brick. The rapid growth in today’s construction industry has obliged the civil engineers in searching for more efficient and durable alternatives far beyond the limitations of the conventional brick production [1-2]. A number of studies have been made and serious steps have been taken in manufacturing of bricks  from several waste materials. However, the traditional mean of bricks production which has brought hazardous impacts to the context has not yet been changed or replaced by more efficient and sustainable one [3], [4]. Most of the researches went through enhancing the clay brick quality and properties by mixing the clay with various recycled wastes as foundry sand, granite sawing waste, harbour sediments, perlite, sugarcane, baggase ash, clay waste and fine waste of boron, sewage sludge, waste glass from structural wall and other different wastes. Compile this state of the art work of manufacturing bricks in the past and the current trend in the bricks industry with respect to the raw materials, ways of manufacturing and the out- comings.This project presents an experimental study on the utilization of waste materials which replaces clay with (Plastic covers, Ceramic Powder, Egg Shell Powder, GGBS, Silica Fume, Rice Husk Ash and Lime Powder) and Fine Aggregate with (Recycled glass, Dry Grass, Dead Leaves, Tree barks powder, Sugar cane powder, crumbed rubber) to produce eco-friendly Bricks. This project is an attempt to fill the gap of the past studies and suggest more sustainable and sophisticated methods of brick manufacturing in the future. 40 percent replacement of fine aggregate with crumbled rubber and dry grass in mortar bricks have given encouraging results, also the replacement of cement by egg shell powder at 20% has given a considerable result  


2018 ◽  
Vol 65 ◽  
pp. 02010 ◽  
Author(s):  
Hock Yong Tiong ◽  
Siong Kang Lim ◽  
Yee Ling Lee ◽  
Jee Hock Lim

This study presents the effects of egg shell powder on lightweight foamed concrete when partially replace the cement. At 2017, 12235 million eggs were consumed and around 85 thousand tonnes of egg shell waste was the yield in Malaysia. The waste might result in an environmental problem if it is not reused properly. Besides, large cement production also results in carbon dioxide emission and depletion of natural limestone. Therefore, studies on effects of egg shell powder on properties of lightweight foamed concrete as partial replacement of cement is attractive to be carried out by aiming to promote the application of lightweight foamed concrete as well as to mitigate the environmental issue by reducing the number of eggshell wastes and pure cement production. The objective of this study is to investigate the effects on engineering properties of lightweight foamed concrete with a fresh density of 1200 ± 50 kg/m3 when the cement is partially replaced by egg shell powder at replacement levels of 0%, 2.5%, 5%, 7.5%, and 10% by mass. The properties of the lightweight foamed concrete studied included workability, stability, compressive strength, flexural strength, water absorption, and sorptivity. The results show that the replacement of egg shell powder reduces the spread diameter, stability, and sorptivity, and improve the compressive and flexural strengths at replacement level of up to 5%. The eggshell powder is feasible to be used as partial cement replacement material for the production of the masonry unit.


Author(s):  
Prabhu P ◽  
Ramesh S ◽  
Archana M

The need for locally manufactured building materials has been emphasized in many countries of the world because of their easy availability & low cost. Bricks also have been regarded as one of the longest lasting and strongest building materials used throughout history. ordinary building bricks are made of a mixture of clay, which is subjected to various processes, differing according to the nature of the material, the method of manufacture and the character of the finished product. After being properly prepared the clay is formed in moulds to the desired shape, then dried and burnt. on seeing the present day demand for bricks, an attempt was made to study the behavior of bricks manufactured using, different waste materials like Bagasse ash with alumina sulphate, and lime was used to manufacture bricks. The main aim of this project was to compare the compressive strength of the bricks, so for this purpose different percentage of materials were separately added 6%, 8%, 16% & 20% by weight and then the compressive strength of the Bricks was established, and then with the help of graph a comparison between compressive strength of bricks, made out of Bagasse ash with alumina sulphate and normal brick was determined. Before manufacturing the bricks, different properties of the materials (Bagasse ash with alumina sulphate) was also verified. After that bricks were made & sun dried and some bricks were brunt & then with the help v of Compression Testing Machine (C.T.M.) finely their compressive strength was calculated. From this test in this project work it was concluded that the Bagasse ash was that waste material, which gave the acceptable compressive strength. The effects of the addition of Bagasse ash with alumina sulphate by percent-clay mix were also investigated. The admixtures were added in various combinations of proportions by weight (from 6 to 20%). The alumina sulphate, to contribute in attaining denser products with acceptable in compressive strengths, higher softening coefficients, lower water absorption rates, good compaction.


In present scenario concrete is highly consumed material in construction field due to its advantages, because of this the natural resources are depleting day by day at an alarming rate and there is an immediate need for finding alternate materials to the natural materials in concrete. In this paper an effort is made to find alternate partial replacement materials for cement and fine aggregate (FA). M40 grade concrete is adopted and the cement was replaced with egg shell powder with different percentages of 5%, 10% and 15%. The optimum percentage egg shell powder (ESP) is obtained at 10%. At optimum ESP the FA is replaced with Quarry Dust (QD) with percentages of 25%, 50%and75%. The maximum strength properties are obtained at 10% ESP and 50% QD and the concrete is also durable at 10% ESP and 50% QD with Water Cement Ratio is 0.38.


Sign in / Sign up

Export Citation Format

Share Document