scholarly journals Tracking a Maneuvering Target using AUV

In this paper effort is made to track a maneuvering target using Unmanned Aerial Vehicles (UAV) with range, bearing and elevation measurements. Extended Kalman filter is preferred to processmeasurements tampered with noise. Algorithm to detect the maneuver of target is developed in this paper. This information about range, bearing and elevation is communicated to weapon guidance station by means of personal communication system between UAV and weapon guidance station. Mathematical modeling in detail and simulation results is presented.

Author(s):  
Mohammad Sarim ◽  
Alireza Nemati ◽  
Manish Kumar ◽  
Kelly Cohen

For effective navigation and tracking applications involving Unmanned Aerial Vehicles (UAVs), data fusion from multiple sensors is utilized. However, asynchronous nature of the sensors, coupled with loss of data and communication delays, makes this process not very reliable. For a better estimation of the data, some sort of filtering scheme is needed. This paper presents an Extended Kalman Filter (EKF) based quadrotor state estimation by exploiting the dynamic model of the UAV. The data coming from the sensors is noisy and intermittent. The EKF filters and provides estimated data for the missing timestamps. An indoor flight test establishes the accuracy of the EKF, and another outdoor flight test validates the developed scheme for the real world scenario.


2017 ◽  
Vol 9 (3) ◽  
pp. 169-186 ◽  
Author(s):  
Kexin Guo ◽  
Zhirong Qiu ◽  
Wei Meng ◽  
Lihua Xie ◽  
Rodney Teo

This article puts forward an indirect cooperative relative localization method to estimate the position of unmanned aerial vehicles (UAVs) relative to their neighbors based solely on distance and self-displacement measurements in GPS denied environments. Our method consists of two stages. Initially, assuming no knowledge about its own and neighbors’ states and limited by the environment or task constraints, each unmanned aerial vehicle (UAV) solves an active 2D relative localization problem to obtain an estimate of its initial position relative to a static hovering quadcopter (a.k.a. beacon), which is subsequently refined by the extended Kalman filter to account for the noise in distance and displacement measurements. Starting with the refined initial relative localization guess, the second stage generalizes the extended Kalman filter strategy to the case where all unmanned aerial vehicles (UAV) move simultaneously. In this stage, each unmanned aerial vehicle (UAV) carries out cooperative localization through the inter-unmanned aerial vehicle distance given by ultra-wideband and exchanging the self-displacements of neighboring unmanned aerial vehicles (UAV). Extensive simulations and flight experiments are presented to corroborate the effectiveness of our proposed relative localization initialization strategy and algorithm.


Author(s):  
N. N. Arefyev

Unmanned aerial vehicles (UAVs) are increasingly used in military and scientific research. Some miniaturized UAVs rely entirely on the global positioning system (GPS) for navigation. GPS is vulnerable to accidental or deliberate interference that can cause it to fail. It is not unusual, even in a benign environment, for a GPS outage to occur for periods of seconds to minutes. For UAVs relying solely on GPS for navigation such an event can be catastrophic. This article proposes an extended Kalman filter approach to estimate the location of a UAV when its GPS connection is lost, using inter-UAV distance measurements Increasing the accuracy of coordinate’s determination is one of the most crucial tasks of the modern UAV navigation. This task can be solved by using different variants of integration of navigation systems. One of the modern variants of integration is the combination of GPS/GLONASS-navigation with the extended Kalman filter, which estimates the accuracy recursively with the help of incomplete and noisy measurements. Currently different variations of extended Kalman filter exist and are under development, which include various number of variable states [1]. This article will show the utilization efficiency of extended Kalman filter in modern developments.


Author(s):  
Mohadese Jahanian ◽  
Amin Ramezani ◽  
Ali Moarefianpour ◽  
Mahdi Aliari Shouredeli

One of the most significant systems that can be expressed by partial differential equations (PDEs) is the transmission pipeline system. To avoid the accidents that originated from oil and gas pipeline leakage, the exact location and quantity of leakage are required to be recognized. The designed goal is a leakage diagnosis based on the system model and the use of real data provided by transmission line systems. Nonlinear equations of the system have been extracted employing continuity and momentum equations. In this paper, the extended Kalman filter (EKF) is used to detect and locate the leakage and to attenuate the negative effects of measurement and process noises. Besides, a robust extended Kalman filter (REKF) is applied to compensate for the effect of parameter uncertainty. The quantity and the location of the occurred leakage are estimated along the pipeline. Simulation results show that REKF has better estimations of the leak and its location as compared with that of EKF. This filter is robust against process noise, measurement noise, parameter uncertainties, and guarantees a higher limit for the covariance of state estimation error as well. It is remarkable that simulation results are evaluated by OLGA software.


2014 ◽  
Vol 615 ◽  
pp. 244-247
Author(s):  
Dong Wang ◽  
Guo Yu Lin ◽  
Wei Gong Zhang

The wheel force transducer (WFT) is used to measure dynamic wheel loads. Unlike other force sensors, WFT is rotating with the wheel. For this reason, the outputs and the inputs of the transducer are nonlinearly related, and traditional Kalman Filter is not suitable. In this paper, a new real-time filter algorithm utilizing Quadrature Kalman Filter (QKF) is proposed to solve this problem. In Quadrature Kalman Filter, Singer model is introduced to track the wheel force, and the observation function is established for WFT. The simulation results illustrate that the new filter outperforms the traditional Unscented Kalman Filter (UKF) and Extended Kalman Filter (EKF).


Robotica ◽  
2021 ◽  
pp. 1-20
Author(s):  
Daegyun Choi ◽  
Anirudh Chhabra ◽  
Donghoon Kim

Summary This paper proposes an intelligent cooperative collision avoidance approach combining the enhanced potential field (EPF) with a fuzzy inference system (FIS) to resolve local minima and goal non-reachable with obstacles nearby issues and provide a near-optimal collision-free trajectory. A genetic algorithm is utilized to optimize parameters of membership function and rule base of the FISs. This work uses a single scenario containing all issues and interactions among unmanned aerial vehicles (UAVs) for training. For validating the performance, two scenarios containing obstacles with different shapes and several UAVs in small airspace are considered. Multiple simulation results show that the proposed approach outperforms the conventional EPF approach statistically.


Sign in / Sign up

Export Citation Format

Share Document