scholarly journals Secure Collaborative Key Management System for Mobile Cloud Data Storage

Mobile Cloud Computing (MCC) is the combination of mobile computing, cloud computing and wireless networks to make mobile thin client devices resource-rich in terms of storage, memory computational power and battery power by remotely executing the wide range of mobile application’s data in a pay-per-use cloud computing environment. In MCC, one of the primary concern is the security and privacy of data stored in cloud. The existing techniques are not efficient to manage secret keys during key generation and key distribution processes. The objective of this project work is to develop a secure collaborative key management system (SCKMS) for mobile cloud data storage by implementing by the cryptographic techniques for file encryption and file decryption, key generation, key encryption, key distribution and key decryption processes. In our proposed methodology, DriverHQ public cloud infrastructure is used for accessing the secure file as Storage as a Service (SaaS) mechanism. For generating the secret key, the proposed work implemented with Pseudo Random Number Generator (PRNG) algorithm, it produces the sequence of random numbers for every time. The keys are distributed using general Secret key Sharing Scheme (SSS). The key pattern matching process is implemented to spilt the secret key into three partitions and sent it to client (mobile devices), cloud server and decryption server. The decryption server key and cloud sever key are mapped with client key. The key shares are grouped together using key-lock pair mechanism and it achieves key integrity during untrusted medium communication. The proposed work also eliminates key escrow and key exposure problems. The files are encrypted and decrypted using Rivest-Shamir-Adleman (RSA) algorithm. The RSA algorithm is more vulnerable against the brute force attack, because of using larger key size. Thus, the proposed SCKMS achieves data confidentiality and data integrity in mobile cloud storage data when compared to existing Key Management System (KMS). The work also reduces encryption & decryption computation and storage overhead in client mobile devices, and minimizes the energy consumption of the mobile devices efficiently

2014 ◽  
Vol 13 (7) ◽  
pp. 4625-4632
Author(s):  
Jyh-Shyan Lin ◽  
Kuo-Hsiung Liao ◽  
Chao-Hsing Hsu

Cloud computing and cloud data storage have become important applications on the Internet. An important trend in cloud computing and cloud data storage is group collaboration since it is a great inducement for an entity to use a cloud service, especially for an international enterprise. In this paper we propose a cloud data storage scheme with some protocols to support group collaboration. A group of users can operate on a set of data collaboratively with dynamic data update supported. Every member of the group can access, update and verify the data independently. The verification can also be authorized to a third-party auditor for convenience.


Author(s):  
Khadija Akherfi ◽  
Hamid Harroud ◽  
Michael Gerndt

With the recent advances in cloud computing and the improvement in the capabilities of mobile devices in terms of speed, storage, and computing power, Mobile Cloud Computing (MCC) is emerging as one of important branches of cloud computing. MCC is an extension of cloud computing with the support of mobility. In this paper, the authors first present the specific concerns and key challenges in mobile cloud computing. They then discuss the different approaches to tackle the main issues in MCC that have been introduced so far, and finally focus on describing the proposed overall architecture of a middleware that will contribute to providing mobile users data storage and processing services based on their mobile devices capabilities, availability, and usage. A prototype of the middleware is developed and three scenarios are described to demonstrate how the middleware performs in adapting the provision of cloud web services by transforming SOAP messages to REST and XML format to JSON, in optimizing the results by extracting relevant information, and in improving the availability by caching. Initial analysis shows that the mobile cloud middleware improves the quality of service for mobiles, and provides lightweight responses for mobile cloud services.


Author(s):  
Jyoti Grover ◽  
Gaurav Kheterpal

Mobile Cloud Computing (MCC) has become an important research area due to rapid growth of mobile applications and emergence of cloud computing. MCC refers to integration of cloud computing into a mobile environment. Cloud providers (e.g. Google, Amazon, and Salesforce) support mobile users by providing the required infrastructure (e.g. servers, networks, and storage), platforms, and software. Mobile devices are rapidly becoming a fundamental part of human lives and these enable users to access various mobile applications through remote servers using wireless networks. Traditional mobile device-based computing, data storage, and large-scale information processing is transferred to “cloud,” and therefore, requirement of mobile devices with high computing capability and resources are reduced. This chapter provides a survey of MCC including its definition, architecture, and applications. The authors discuss the issues in MCC, existing solutions, and approaches. They also touch upon the computation offloading mechanism for MCC.


2018 ◽  
Vol 7 (3.1) ◽  
pp. 128
Author(s):  
Selvam L ◽  
Arokia Renjit J

Recent security incidents on public cloud data storage had raised concerns on cloud data security. Development in the hacking area has risen in the past few years. Due to this, Cyber Security is needed which plays an important role to cover the secret information. Currently, the attack of challenging channel is both the symmetric as well as the asymmetric encryption algorithm. Since, in both criteria the secret key has to be transmitting through a security challenging channel. For this many techniques have been put forward. The Main focus is on the vulnerabilities of the private keys while hoarded in different places for the fast utilization of the round key of the AES algorithm. In the view of the hackers, extracting the private key is nearly as same as obtaining the plain text itself. So, the honey encryption technique is used to futile the attacker by producing the fake key for each and every try of the Key puncher. An indication will be generated automatically to the storage manager when an attempt is made by the attacker. The Honey encryption is the best algorithm to overcome the drawbacks of the AES algorithm but it has some time constraints which are also eliminated here. Thus, eliminating the Brute Force Attack and providing a secure system for storing the secret key.  


Mobile Cloud Computing is a combination of general Cloud Computing and Mobile Computing in which we have to access resources from the remote cloud data center with the help of mobile electronics and peripherals like mobile smartphones, laptops, gadgets, etc. via Cellular Technology or Wireless Communication. Mobile devices have lots of resource constraints like storage capacity, processing speed, and battery life. Hence through simple mobile computing software and programming, we cannot manipulate on mobile devices of cloud data center information. Because of such kinds of difficulty, we have to process information or data through external mobile devices. Accessing and processing of data with the help of Trusted Third Party Agency (TPA) outside the cloud data center and mobile devices have lots of security challenges. To make cloud data secure over outside resources, lots of terminologies and theory are put forward by various researchers. In this paper, we will analyze their theory and its limitations and offer our security algorithm proposal. In this thesis article, we analyze the security framework for storing data on Cloud Server by Mobile and limitation of this process. Also, we review the theory of how data can be secure our data on cloud administrators


2013 ◽  
Vol 756-759 ◽  
pp. 1275-1279
Author(s):  
Lin Na Huang ◽  
Feng Hua Liu

Cloud storage of high performance is the basic condition for cloud computing. This article introduces the concept and advantage of cloud storage, discusses the infrastructure of cloud storage system as well as the architecture of cloud data storage, researches the details about the design of Distributed File System within cloud data storage, at the same time, puts forward different developing strategies for the enterprises according to the different roles that the enterprises are acting as during the developing process of cloud computing.


Author(s):  
Y. Kiran Kumar ◽  
R. Mahammad Shafi

<span lang="EN-US">Cloud Computing is the ability to improve the utility or train new human resources without investing in new infrastructure, or add capabilities to existence without the latest software licensing. It expanded the capabilities of Information Technology (IT). From the past few years, cloud computing has developed from a good business concept in the best rising sectors of the IT industry. But more information on individuals and companies was put in the cloud, and concerns began to think about how secure the cloud environment was. Despite cloud surrounding structures, enterprise users still do not want to expand their business in the cloud. Security reduces the growth of cloud computing and continues to spread the market with complexity with data privacy and data protection. The security of cloud computing has constantly been an significant aspect of improved quality of service from cloud service providers.  Data storage in the cloud has a problem related to data security. However, cloud computing construct many new security challenges which have not been well examine. In order to ensure that the user's data in the cloud is secure, we have proposed an effective mechanism with a distinctive feature of data integrity and privacy. This paper focusing on problems relating to the cloud data storage techniques and security in virtual environment. We recommend a method for providing data storage and security in cloud using public key Cryptosystem, which uses the concept of the modified RSA algorithm to provide better security for the data stored in the cloud. </span>


Author(s):  
Seada Abdu Wakene ◽  
Sisay Muleta Hababa ◽  
Gutema Seboka Daba ◽  
K S Ananda Kumar

Mobile cloud computing (MCC) combines cloud computing and mobile computing to deliver vast computational resources to mobile consumers, network operators, and cloud computing providers. You may access your data from anywhere in the globe using any mobile device that is linked to the Internet. Cloud computing provides access to data in real-time whenever and wherever want. Any conventional mobile device can benefit from MCC's infrastructure, computational capacity, software, and platform services. Network security, web application security, data access, authentication, authorization, data confidentiality, and data breach are all concerns of MCC's security. Because mobile devices lack sufficient storage and processing power, their data storage capacity is limited. Users of mobile devices may inadvertently provide sensitive information over the network or through the application. Therefore, data security is the main concern for mobile device users. The objective of this paper is to find a solution that can enhance technical requirements with relation to user’s data security and privacy in mobile cloud computing. To achieve this improved blowfish encryption algorithm is used to encrypt each user’s data security and where the shared secret key is hash down using message digest called secured hash function. Hashing can increase the integrity and privacy of user data. The proposed algorithm is evaluated with a normal blowfish algorithm and 3DES with different parameters. Improved blowfish algorithm shows better performance than normal blowfish algorithm and 3DES. In this work, we have developed web-based application where the Amazon MySQL RDS database is used for data storage.


Author(s):  
Mohammed A. AlZain ◽  
Alice S. Li ◽  
Ben Soh ◽  
Mehedi Masud

Cloud computing is considered a great paradigm that enables access to large scale, on demand, flexible computing infrastructure. Lower infrastructure cost and better application performance are some of the benefits of utilizing a cloud computing model. With the appearance of the new generation of multi-cloud computing, clients can benefit from a diversity of services. However, data security has become an important requirement for clients when dealing with clouds that may fail due to faults in the software or hardware, or attacks from malicious insiders. Hence, building a highly dependable and reliable cloud system has become a critical research problem. To that end, this chapter investigates and presents the results in relation to that how Byzantine fault tolerance (BFT) and secure cloud data storage and sharing techniques can be deployed to manage multi-cloud data dependability faults.


Sign in / Sign up

Export Citation Format

Share Document