scholarly journals Skin Cancer Detection using CNN Algorithm

The project “Disease Prediction Model” focuses on predicting the type of skin cancer. It deals with constructing a Convolutional Neural Network(CNN) sequential model in order to find the type of a skin cancer which takes a huge troll on mankind well-being. Since development of programmed methods increases the accuracy at high scale for identifying the type of skin cancer, we use Convolutional Neural Network, CNN algorithm in order to build our model . For this we make use of a sequential model. The data set that we have considered for this project is collected from NCBI, which is well known as HAM10000 dataset, it consists of massive amounts of information regarding several dermatoscopic images of most trivial pigmented lesions of skin which are collected from different sufferers. Once the dataset is collected, cleaned, it is split into training and testing data sets. We used CNN to build our model and using the training data we trained the model , later using the testing data we tested the model. Once the model is implemented over the testing data, plots are made in order to analyze the relation between the echos and loss function. It is also used to analyse accuracy and echos for both training and testing data.

2020 ◽  
Vol 224 (1) ◽  
pp. 230-240
Author(s):  
Sean W Johnson ◽  
Derrick J A Chambers ◽  
Michael S Boltz ◽  
Keith D Koper

SUMMARY Monitoring mining-induced seismicity (MIS) can help engineers understand the rock mass response to resource extraction. With a thorough understanding of ongoing geomechanical processes, engineers can operate mines, especially those mines with the propensity for rockbursting, more safely and efficiently. Unfortunately, processing MIS data usually requires significant effort from human analysts, which can result in substantial costs and time commitments. The problem is exacerbated for operations that produce copious amounts of MIS, such as mines with high-stress and/or extraction ratios. Recently, deep learning methods have shown the ability to significantly improve the quality of automated arrival-time picking on earthquake data recorded by regional seismic networks. However, relatively little has been published on applying these techniques to MIS. In this study, we compare the performance of a convolutional neural network (CNN) originally trained to pick arrival times on the Southern California Seismic Network (SCSN) to that of human analysts on coal-mine-related MIS. We perform comparisons on several coal-related MIS data sets recorded at various network scales, sampling rates and mines. We find that the Southern-California-trained CNN does not perform well on any of our data sets without retraining. However, applying the concept of transfer learning, we retrain the SCSN model with relatively little MIS data after which the CNN performs nearly as well as a human analyst. When retrained with data from a single analyst, the analyst-CNN pick time residual variance is lower than the variance observed between human analysts. We also compare the retrained CNN to a simpler, optimized picking algorithm, which falls short of the CNN's performance. We conclude that CNNs can achieve a significant improvement in automated phase picking although some data set-specific training will usually be required. Moreover, initializing training with weights found from other, even very different, data sets can greatly reduce the amount of training data required to achieve a given performance threshold.


Development of abnormal cells are the cause of skin cancer that have the ability to attack or spread to various parts of the body. The skin cancer signs may include mole that has varied in size, shape, color, and may also haveno –uniform edges, might be having multiple colours, and would itch orevn bleed in some cases. The exposure to the UV-rays from the sun is considered to be accountable for more than 90% of the Skin Cancer cases which are recorded.In this paper, the development of a classificiation system for skin cancer, is discussed, using Convolutional Neural Network which would help in classifying the cancer usingTensorFlow and Keras as Malignantor Benign. The collected images from the data set are fed into the system and it is processed to classify the skin cancer. After the implementation the accuracy of the Convolutional 2-D layer system developed is found to be 78%.


2021 ◽  
Vol 2137 (1) ◽  
pp. 012060
Author(s):  
Ping He ◽  
Yong Li ◽  
Shoulong Chen ◽  
Hoghua Xu ◽  
Lei Zhu ◽  
...  

Abstract In order to realize transformer voiceprint recognition, a transformer voiceprint recognition model based on Mel spectrum convolution neural network is proposed. Firstly, the transformer core looseness fault is simulated by setting different preloads, and the sound signals under different preloads are collected; Secondly, the sound signal is converted into a spectrogram that can be trained by convolutional neural network, and then the dimension is reduced by Mel filter bank to draw Mel spectrogram, which can generate spectrogram data sets under different preloads in batch; Finally, the data set is introduced into convolutional neural network for training, and the transformer voiceprint fault recognition model is obtained. The results show that the training accuracy of the proposed Mel spectrum convolution neural network transformer identification model is 99.91%, which can well identify the core loosening faults.


2020 ◽  
Vol 9 (05) ◽  
pp. 25052-25056
Author(s):  
Abhi Kadam ◽  
Anupama Mhatre ◽  
Sayali Redasani ◽  
Amit Nerurkar

Current lighting technologies extend the options for changing the appearance of rooms and closed spaces, as such creating ambiences with an affective meaning. Using intelligence, these ambiences may instantly be adapted to the needs of the room’s occupant(s), possibly improving their well-being. In this paper, we set actuate lighting in our surrounding using mood detection. We analyze the mood of the person by Facial Emotion Recognition using deep learning model such as Convolutional Neural Network (CNN). On recognizing this emotion, we will actuate lighting in our surrounding in accordance with the mood. Based on implementation results, the system needs to be developed further by adding more specific data class and training data.


2013 ◽  
Vol 373-375 ◽  
pp. 1212-1219
Author(s):  
Afrias Sarotama ◽  
Benyamin Kusumoputro

A good model is necessary in order to design a controller of a system off-line. It is especially beneficial in the implementation of new advanced control schemes in Unmanned Aerial Vehicle (UAV). Considering the safety and benefit of an off-line tuning of the UAV controllers, this paper identifies a dynamic MIMO UAV nonlinear system which is derived based on the collection of input-output data taken from a test flights (36250 samples data). These input-output sample flight data are grouped into two flight data sets. The first flight data set, a chirp signal, is used for training the neural network in order to determine parameters (weights) for the network. Validation of the network is performed using the second data set, which is not used for training, and is a representation of UAV circular flight movement. An artificial neural network is trained using the training data set and thereafter the network is excited by the second set input data set. The predicted outputs based on our proposed Neural Network model is similar to the desired outputs (roll, pitch and yaw) which has been produced by real UAV system.


2020 ◽  
Vol 9 (3) ◽  
pp. 273-282
Author(s):  
Isna Wulandari ◽  
Hasbi Yasin ◽  
Tatik Widiharih

The recognition of herbs and spices among young generation is still low. Based on research in SMK 9 Bandung, showed that there are 47% of students that did not recognize herbs and spices. The method that can be used to overcome this problem is automatic digital sorting of herbs and spices using Convolutional Neural Network (CNN) algorithm. In this study, there are 300 images of herbs and spices that will be classified into 3 categories. It’s ginseng, ginger and galangal. Data in each category is divided into two, training data and testing data with a ratio of 80%: 20%. CNN model used in classification of digital images of herbs and spices is a model with 2 convolutional layers, where the first convolutional layer has 10 filters and the second convolutional layer has 20 filters. Each filter has a kernel matrix with a size of 3x3. The filter size at the pooling layer is 3x3 and the number of neurons in the hidden layer is 10. The activation function at the convolutional layer and hidden layer is tanh, and the activation function at the output layer is softmax. In this model, the accuracy of training data is 0.9875 and the loss value is 0.0769. The accuracy of testing data is 0.85 and the loss value is 0.4773. Meanwhile, testing new data with 3 images for each category produces an accuracy of 88.89%. Keywords: image classification, herbs and spices, CNN. 


Author(s):  
Muhammad Ali Ramdhani ◽  
Dian Sa’adillah Maylawati ◽  
Teddy Mantoro

<span>Every language has unique characteristics, structures, and grammar. Thus, different styles will have different processes and result in processed in Natural Language Processing (NLP) research area. In the current NLP research area, Data Mining (DM) or Machine Learning (ML) technique is popular, especially for Deep Learning (DL) method. This research aims to classify text data in the Indonesian language using Convolutional Neural Network (CNN) as one of the DL algorithms. The CNN algorithm used modified following the Indonesian language characteristics. Thereby, in the text pre-processing phase, stopword removal and stemming are particularly suitable for the Indonesian language. The experiment conducted using 472 Indonesian News text data from various sources with four categories: ‘hiburan’ (entertainment), ‘olahraga’ (sport), ‘tajuk utama’ (headline news), and ‘teknologi’ (technology). Based on the experiment and evaluation using 377 training data and 95 testing data, producing five models with ten epoch for each model, CNN has the best percentage of accuracy around 90,74% and loss value around 29,05% for 300 hidden layers in classifying the Indonesian News data.</span>


2018 ◽  
Vol 25 (3) ◽  
pp. 655-670 ◽  
Author(s):  
Tsung-Wei Ke ◽  
Aaron S. Brewster ◽  
Stella X. Yu ◽  
Daniela Ushizima ◽  
Chao Yang ◽  
...  

A new tool is introduced for screening macromolecular X-ray crystallography diffraction images produced at an X-ray free-electron laser light source. Based on a data-driven deep learning approach, the proposed tool executes a convolutional neural network to detect Bragg spots. Automatic image processing algorithms described can enable the classification of large data sets, acquired under realistic conditions consisting of noisy data with experimental artifacts. Outcomes are compared for different data regimes, including samples from multiple instruments and differing amounts of training data for neural network optimization.


2021 ◽  
Vol 12 (1) ◽  
pp. 1-11
Author(s):  
Kishore Sugali ◽  
Chris Sprunger ◽  
Venkata N Inukollu

Artificial Intelligence and Machine Learning have been around for a long time. In recent years, there has been a surge in popularity for applications integrating AI and ML technology. As with traditional development, software testing is a critical component of a successful AI/ML application. The development methodology used in AI/ML contrasts significantly from traditional development. In light of these distinctions, various software testing challenges arise. The emphasis of this paper is on the challenge of effectively splitting the data into training and testing data sets. By applying a k-Means clustering strategy to the data set followed by a decision tree, we can significantly increase the likelihood of the training data set to represent the domain of the full dataset and thus avoid training a model that is likely to fail because it has only learned a subset of the full data domain.


2020 ◽  
Vol 13 (6) ◽  
pp. 2631-2644 ◽  
Author(s):  
Georgy Ayzel ◽  
Tobias Scheffer ◽  
Maik Heistermann

Abstract. In this study, we present RainNet, a deep convolutional neural network for radar-based precipitation nowcasting. Its design was inspired by the U-Net and SegNet families of deep learning models, which were originally designed for binary segmentation tasks. RainNet was trained to predict continuous precipitation intensities at a lead time of 5 min, using several years of quality-controlled weather radar composites provided by the German Weather Service (DWD). That data set covers Germany with a spatial domain of 900 km×900 km and has a resolution of 1 km in space and 5 min in time. Independent verification experiments were carried out on 11 summer precipitation events from 2016 to 2017. In order to achieve a lead time of 1 h, a recursive approach was implemented by using RainNet predictions at 5 min lead times as model inputs for longer lead times. In the verification experiments, trivial Eulerian persistence and a conventional model based on optical flow served as benchmarks. The latter is available in the rainymotion library and had previously been shown to outperform DWD's operational nowcasting model for the same set of verification events. RainNet significantly outperforms the benchmark models at all lead times up to 60 min for the routine verification metrics mean absolute error (MAE) and the critical success index (CSI) at intensity thresholds of 0.125, 1, and 5 mm h−1. However, rainymotion turned out to be superior in predicting the exceedance of higher intensity thresholds (here 10 and 15 mm h−1). The limited ability of RainNet to predict heavy rainfall intensities is an undesirable property which we attribute to a high level of spatial smoothing introduced by the model. At a lead time of 5 min, an analysis of power spectral density confirmed a significant loss of spectral power at length scales of 16 km and below. Obviously, RainNet had learned an optimal level of smoothing to produce a nowcast at 5 min lead time. In that sense, the loss of spectral power at small scales is informative, too, as it reflects the limits of predictability as a function of spatial scale. Beyond the lead time of 5 min, however, the increasing level of smoothing is a mere artifact – an analogue to numerical diffusion – that is not a property of RainNet itself but of its recursive application. In the context of early warning, the smoothing is particularly unfavorable since pronounced features of intense precipitation tend to get lost over longer lead times. Hence, we propose several options to address this issue in prospective research, including an adjustment of the loss function for model training, model training for longer lead times, and the prediction of threshold exceedance in terms of a binary segmentation task. Furthermore, we suggest additional input data that could help to better identify situations with imminent precipitation dynamics. The model code, pretrained weights, and training data are provided in open repositories as an input for such future studies.


Sign in / Sign up

Export Citation Format

Share Document