scholarly journals Light Actuation Based On Facial Mood Recognition

2020 ◽  
Vol 9 (05) ◽  
pp. 25052-25056
Author(s):  
Abhi Kadam ◽  
Anupama Mhatre ◽  
Sayali Redasani ◽  
Amit Nerurkar

Current lighting technologies extend the options for changing the appearance of rooms and closed spaces, as such creating ambiences with an affective meaning. Using intelligence, these ambiences may instantly be adapted to the needs of the room’s occupant(s), possibly improving their well-being. In this paper, we set actuate lighting in our surrounding using mood detection. We analyze the mood of the person by Facial Emotion Recognition using deep learning model such as Convolutional Neural Network (CNN). On recognizing this emotion, we will actuate lighting in our surrounding in accordance with the mood. Based on implementation results, the system needs to be developed further by adding more specific data class and training data.

2021 ◽  
Author(s):  
Naveen Kumari ◽  
Rekha Bhatia

Abstract Facial emotion recognition extracts the human emotions from the images and videos. As such, it requires an algorithm to understand and model the relationships between faces and facial expressions, and to recognize human emotions. Recently, deep learning models are extensively utilized enhance the facial emotion recognition rate. However, the deep learning models suffer from the overfitting issue. Moreover, deep learning models perform poorly for images which have poor visibility and noise. Therefore, in this paper, a novel deep learning based facial emotion recognition tool is proposed. Initially, a joint trilateral filter is applied to the obtained dataset to remove the noise. Thereafter, contrast-limited adaptive histogram equalization (CLAHE) is applied to the filtered images to improve the visibility of images. Finally, a deep convolutional neural network is trained. Nadam optimizer is also utilized to optimize the cost function of deep convolutional neural networks. Experiments are achieved by using the benchmark dataset and competitive human emotion recognition models. Comparative analysis demonstrates that the proposed facial emotion recognition model performs considerably better compared to the competitive models.


2021 ◽  
Vol 13 (19) ◽  
pp. 3859
Author(s):  
Joby M. Prince Czarnecki ◽  
Sathishkumar Samiappan ◽  
Meilun Zhou ◽  
Cary Daniel McCraine ◽  
Louis L. Wasson

The radiometric quality of remotely sensed imagery is crucial for precision agriculture applications because estimations of plant health rely on the underlying quality. Sky conditions, and specifically shadowing from clouds, are critical determinants in the quality of images that can be obtained from low-altitude sensing platforms. In this work, we first compare common deep learning approaches to classify sky conditions with regard to cloud shadows in agricultural fields using a visible spectrum camera. We then develop an artificial-intelligence-based edge computing system to fully automate the classification process. Training data consisting of 100 oblique angle images of the sky were provided to a convolutional neural network and two deep residual neural networks (ResNet18 and ResNet34) to facilitate learning two classes, namely (1) good image quality expected, and (2) degraded image quality expected. The expectation of quality stemmed from the sky condition (i.e., density, coverage, and thickness of clouds) present at the time of the image capture. These networks were tested using a set of 13,000 images. Our results demonstrated that ResNet18 and ResNet34 classifiers produced better classification accuracy when compared to a convolutional neural network classifier. The best overall accuracy was obtained by ResNet34, which was 92% accurate, with a Kappa statistic of 0.77. These results demonstrate a low-cost solution to quality control for future autonomous farming systems that will operate without human intervention and supervision.


Author(s):  
Uzma Batool ◽  
Mohd Ibrahim Shapiai ◽  
Nordinah Ismail ◽  
Hilman Fauzi ◽  
Syahrizal Salleh

Silicon wafer defect data collected from fabrication facilities is intrinsically imbalanced because of the variable frequencies of defect types. Frequently occurring types will have more influence on the classification predictions if a model gets trained on such skewed data. A fair classifier for such imbalanced data requires a mechanism to deal with type imbalance in order to avoid biased results. This study has proposed a convolutional neural network for wafer map defect classification, employing oversampling as an imbalance addressing technique. To have an equal participation of all classes in the classifier’s training, data augmentation has been employed, generating more samples in minor classes. The proposed deep learning method has been evaluated on a real wafer map defect dataset and its classification results on the test set returned a 97.91% accuracy. The results were compared with another deep learning based auto-encoder model demonstrating the proposed method, a potential approach for silicon wafer defect classification that needs to be investigated further for its robustness.


2022 ◽  
pp. 1559-1575
Author(s):  
Mário Pereira Véstias

Machine learning is the study of algorithms and models for computing systems to do tasks based on pattern identification and inference. When it is difficult or infeasible to develop an algorithm to do a particular task, machine learning algorithms can provide an output based on previous training data. A well-known machine learning model is deep learning. The most recent deep learning models are based on artificial neural networks (ANN). There exist several types of artificial neural networks including the feedforward neural network, the Kohonen self-organizing neural network, the recurrent neural network, the convolutional neural network, the modular neural network, among others. This article focuses on convolutional neural networks with a description of the model, the training and inference processes and its applicability. It will also give an overview of the most used CNN models and what to expect from the next generation of CNN models.


2020 ◽  
Vol 10 (21) ◽  
pp. 7817
Author(s):  
Ivana Marin ◽  
Ana Kuzmanic Skelin ◽  
Tamara Grujic

The main goal of any classification or regression task is to obtain a model that will generalize well on new, previously unseen data. Due to the recent rise of deep learning and many state-of-the-art results obtained with deep models, deep learning architectures have become one of the most used model architectures nowadays. To generalize well, a deep model needs to learn the training data well without overfitting. The latter implies a correlation of deep model optimization and regularization with generalization performance. In this work, we explore the effect of the used optimization algorithm and regularization techniques on the final generalization performance of the model with convolutional neural network (CNN) architecture widely used in the field of computer vision. We give a detailed overview of optimization and regularization techniques with a comparative analysis of their performance with three CNNs on the CIFAR-10 and Fashion-MNIST image datasets.


2020 ◽  
Vol 8 ◽  
Author(s):  
Adil Khadidos ◽  
Alaa O. Khadidos ◽  
Srihari Kannan ◽  
Yuvaraj Natarajan ◽  
Sachi Nandan Mohanty ◽  
...  

In this paper, a data mining model on a hybrid deep learning framework is designed to diagnose the medical conditions of patients infected with the coronavirus disease 2019 (COVID-19) virus. The hybrid deep learning model is designed as a combination of convolutional neural network (CNN) and recurrent neural network (RNN) and named as DeepSense method. It is designed as a series of layers to extract and classify the related features of COVID-19 infections from the lungs. The computerized tomography image is used as an input data, and hence, the classifier is designed to ease the process of classification on learning the multidimensional input data using the Expert Hidden layers. The validation of the model is conducted against the medical image datasets to predict the infections using deep learning classifiers. The results show that the DeepSense classifier offers accuracy in an improved manner than the conventional deep and machine learning classifiers. The proposed method is validated against three different datasets, where the training data are compared with 70%, 80%, and 90% training data. It specifically provides the quality of the diagnostic method adopted for the prediction of COVID-19 infections in a patient.


2020 ◽  
Vol 17 (9) ◽  
pp. 4660-4665
Author(s):  
L. Megalan Leo ◽  
T. Kalpalatha Reddy

In the modern times, Dental caries is one of the most prevalent diseases of the teeth in the whole world. Almost 90% of the people get affected by cavity. Dental caries is the cavity which occurs due to the remnant food and bacteria. Dental Caries are curable and preventable diseases when it is identified at earlier stage. Dentist uses the radiographic examination in addition with visual tactile inspection to identify the caries. Dentist finds difficult to identify the occlusal, pit and fissure caries. It may lead to sever problem if the cavity left untreated and not identified at the earliest stage. Machine learning can be applied to solve this issue by applying the labelled dataset given by the experienced dentist. In this paper, convolutional based deep learning method is applied to identify the cavity presence in the image. 480 Bite viewing radiography images are collected from the Elsevier standard database. All the input images are resized to 128–128 matrixes. In preprocessing, selective median filter is used to reduce the noise in the image. Pre-processed inputs are given to deep learning model where convolutional neural network with Google Net inception v3 architecture algorithm is implemented. ReLu activation function is used with Google Net to identify the caries that provide the dentists with the precise and optimized results about caries and the area affected. Proposed technique achieves 86.7% accuracy on the testing dataset.


2020 ◽  
Author(s):  
Zicheng Hu ◽  
Alice Tang ◽  
Jaiveer Singh ◽  
Sanchita Bhattacharya ◽  
Atul J. Butte

AbstractCytometry technologies are essential tools for immunology research, providing high-throughput measurements of the immune cells at the single-cell level. Traditional approaches in interpreting and using cytometry measurements include manual or automated gating to identify cell subsets from the cytometry data, providing highly intuitive results but may lead to significant information loss, in that additional details in measured or correlated cell signals might be missed. In this study, we propose and test a deep convolutional neural network for analyzing cytometry data in an end-to-end fashion, allowing a direct association between raw cytometry data and the clinical outcome of interest. Using nine large CyTOF studies from the open-access ImmPort database, we demonstrated that the deep convolutional neural network model can accurately diagnose the latent cytomegalovirus (CMV) in healthy individuals, even when using highly heterogeneous data from different studies. In addition, we developed a permutation-based method for interpreting the deep convolutional neural network model and identified a CD27-CD94+ CD8+ T cell population significantly associated with latent CMV infection. Finally, we provide a tutorial for creating, training and interpreting the tailored deep learning model for cytometry data using Keras and TensorFlow (github.com/hzc363/DeepLearningCyTOF).


2021 ◽  
Vol 8 (3) ◽  
pp. 619
Author(s):  
Candra Dewi ◽  
Andri Santoso ◽  
Indriati Indriati ◽  
Nadia Artha Dewi ◽  
Yoke Kusuma Arbawa

<p>Semakin meningkatnya jumlah penderita diabetes menjadi salah satu faktor penyebab semakin tingginya penderita penyakit <em>diabetic retinophaty</em>. Salah satu citra yang digunakan oleh dokter mata untuk mengidentifikasi <em>diabetic retinophaty</em> adalah foto retina. Dalam penelitian ini dilakukan pengenalan penyakit diabetic retinophaty secara otomatis menggunakan citra <em>fundus</em> retina dan algoritme <em>Convolutional Neural Network</em> (CNN) yang merupakan variasi dari algoritme Deep Learning. Kendala yang ditemukan dalam proses pengenalan adalah warna retina yang cenderung merah kekuningan sehingga ruang warna RGB tidak menghasilkan akurasi yang optimal. Oleh karena itu, dalam penelitian ini dilakukan pengujian pada berbagai ruang warna untuk mendapatkan hasil yang lebih baik. Dari hasil uji coba menggunakan 1000 data pada ruang warna RGB, HSI, YUV dan L*a*b* memberikan hasil yang kurang optimal pada data seimbang dimana akurasi terbaik masih dibawah 50%. Namun pada data tidak seimbang menghasilkan akurasi yang cukup tinggi yaitu 83,53% pada ruang warna YUV dengan pengujian pada data latih dan akurasi 74,40% dengan data uji pada semua ruang warna.</p><p> </p><p><em><strong>Abstract</strong></em></p><p class="Abstract"><em>Increasing the number of people with diabetes is one of the factors causing the high number of people with diabetic retinopathy. One of the images used by ophthalmologists to identify diabetic retinopathy is a retinal photo. In this research, the identification of diabetic retinopathy is done automatically using retinal fundus images and the Convolutional Neural Network (CNN) algorithm, which is a variation of the Deep Learning algorithm. The obstacle found in the recognition process is the color of the retina which tends to be yellowish red so that the RGB color space does not produce optimal accuracy. Therefore, in this research, various color spaces were tested to get better results. From the results of trials using 1000 images data in the color space of RGB, HSI, YUV and L * a * b * give suboptimal results on balanced data where the best accuracy is still below 50%. However, the unbalanced data gives a fairly high accuracy of 83.53% with training data on the YUV color space and 74,40% with testing data on all color spaces.</em></p><p><em><strong><br /></strong></em></p>


Author(s):  
Kannuru Padmaja

Abstract: In this paper, we present the implementation of Devanagari handwritten character recognition using deep learning. Hand written character recognition gaining more importance due to its major contribution in automation system. Devanagari script is one of various languages script in India. It consists of 12 vowels and 36 consonants. Here we implemented the deep learning model to recognize the characters. The character recognition mainly five steps: pre-processing, segmentation, feature extraction, prediction, post-processing. The model will use convolutional neural network to train the model and image processing techniques to use the character recognition and predict the accuracy of rcognition. Keywords: convolutional neural network, character recognition, Devanagari script, deep learning.


Sign in / Sign up

Export Citation Format

Share Document