scholarly journals Application of a convolutional neural network for seismic phase picking of mining-induced seismicity

2020 ◽  
Vol 224 (1) ◽  
pp. 230-240
Author(s):  
Sean W Johnson ◽  
Derrick J A Chambers ◽  
Michael S Boltz ◽  
Keith D Koper

SUMMARY Monitoring mining-induced seismicity (MIS) can help engineers understand the rock mass response to resource extraction. With a thorough understanding of ongoing geomechanical processes, engineers can operate mines, especially those mines with the propensity for rockbursting, more safely and efficiently. Unfortunately, processing MIS data usually requires significant effort from human analysts, which can result in substantial costs and time commitments. The problem is exacerbated for operations that produce copious amounts of MIS, such as mines with high-stress and/or extraction ratios. Recently, deep learning methods have shown the ability to significantly improve the quality of automated arrival-time picking on earthquake data recorded by regional seismic networks. However, relatively little has been published on applying these techniques to MIS. In this study, we compare the performance of a convolutional neural network (CNN) originally trained to pick arrival times on the Southern California Seismic Network (SCSN) to that of human analysts on coal-mine-related MIS. We perform comparisons on several coal-related MIS data sets recorded at various network scales, sampling rates and mines. We find that the Southern-California-trained CNN does not perform well on any of our data sets without retraining. However, applying the concept of transfer learning, we retrain the SCSN model with relatively little MIS data after which the CNN performs nearly as well as a human analyst. When retrained with data from a single analyst, the analyst-CNN pick time residual variance is lower than the variance observed between human analysts. We also compare the retrained CNN to a simpler, optimized picking algorithm, which falls short of the CNN's performance. We conclude that CNNs can achieve a significant improvement in automated phase picking although some data set-specific training will usually be required. Moreover, initializing training with weights found from other, even very different, data sets can greatly reduce the amount of training data required to achieve a given performance threshold.

The project “Disease Prediction Model” focuses on predicting the type of skin cancer. It deals with constructing a Convolutional Neural Network(CNN) sequential model in order to find the type of a skin cancer which takes a huge troll on mankind well-being. Since development of programmed methods increases the accuracy at high scale for identifying the type of skin cancer, we use Convolutional Neural Network, CNN algorithm in order to build our model . For this we make use of a sequential model. The data set that we have considered for this project is collected from NCBI, which is well known as HAM10000 dataset, it consists of massive amounts of information regarding several dermatoscopic images of most trivial pigmented lesions of skin which are collected from different sufferers. Once the dataset is collected, cleaned, it is split into training and testing data sets. We used CNN to build our model and using the training data we trained the model , later using the testing data we tested the model. Once the model is implemented over the testing data, plots are made in order to analyze the relation between the echos and loss function. It is also used to analyse accuracy and echos for both training and testing data.


2021 ◽  
Vol 2137 (1) ◽  
pp. 012060
Author(s):  
Ping He ◽  
Yong Li ◽  
Shoulong Chen ◽  
Hoghua Xu ◽  
Lei Zhu ◽  
...  

Abstract In order to realize transformer voiceprint recognition, a transformer voiceprint recognition model based on Mel spectrum convolution neural network is proposed. Firstly, the transformer core looseness fault is simulated by setting different preloads, and the sound signals under different preloads are collected; Secondly, the sound signal is converted into a spectrogram that can be trained by convolutional neural network, and then the dimension is reduced by Mel filter bank to draw Mel spectrogram, which can generate spectrogram data sets under different preloads in batch; Finally, the data set is introduced into convolutional neural network for training, and the transformer voiceprint fault recognition model is obtained. The results show that the training accuracy of the proposed Mel spectrum convolution neural network transformer identification model is 99.91%, which can well identify the core loosening faults.


2015 ◽  
Vol 31 (1) ◽  
pp. 541-564 ◽  
Author(s):  
Clinton M. Wood ◽  
Brady R. Cox

This paper describes two large, high-quality experimental data sets of ground motions collected with locally dense arrays of seismometers deployed on steep mountainous terrain with varying slope angles and topographic features. These data sets were collected in an area of central-eastern Utah that experiences frequent and predictable mining-induced seismicity as a means to study the effects of topography on small-strain seismic ground motions. The data sets are freely available through the George E. Brown, Jr. Network for Earthquake Engineering Simulation data repository ( NEEShub.org ) under the DOI numbers 10.4231/D34M9199S and 10.4231/D3Z31NN4J. This paper documents the data collection efforts and metadata necessary for utilizing the data sets, as well as the availability of supporting data (e.g., high-resolution digital elevation models). The paper offers a brief summary of analyses conducted on the data sets thus far, in addition to ideas about how these data sets may be used in future studies related to topographic effects and mining seismicity.


2013 ◽  
Vol 373-375 ◽  
pp. 1212-1219
Author(s):  
Afrias Sarotama ◽  
Benyamin Kusumoputro

A good model is necessary in order to design a controller of a system off-line. It is especially beneficial in the implementation of new advanced control schemes in Unmanned Aerial Vehicle (UAV). Considering the safety and benefit of an off-line tuning of the UAV controllers, this paper identifies a dynamic MIMO UAV nonlinear system which is derived based on the collection of input-output data taken from a test flights (36250 samples data). These input-output sample flight data are grouped into two flight data sets. The first flight data set, a chirp signal, is used for training the neural network in order to determine parameters (weights) for the network. Validation of the network is performed using the second data set, which is not used for training, and is a representation of UAV circular flight movement. An artificial neural network is trained using the training data set and thereafter the network is excited by the second set input data set. The predicted outputs based on our proposed Neural Network model is similar to the desired outputs (roll, pitch and yaw) which has been produced by real UAV system.


2018 ◽  
Vol 25 (3) ◽  
pp. 655-670 ◽  
Author(s):  
Tsung-Wei Ke ◽  
Aaron S. Brewster ◽  
Stella X. Yu ◽  
Daniela Ushizima ◽  
Chao Yang ◽  
...  

A new tool is introduced for screening macromolecular X-ray crystallography diffraction images produced at an X-ray free-electron laser light source. Based on a data-driven deep learning approach, the proposed tool executes a convolutional neural network to detect Bragg spots. Automatic image processing algorithms described can enable the classification of large data sets, acquired under realistic conditions consisting of noisy data with experimental artifacts. Outcomes are compared for different data regimes, including samples from multiple instruments and differing amounts of training data for neural network optimization.


2020 ◽  
Vol 13 (6) ◽  
pp. 2631-2644 ◽  
Author(s):  
Georgy Ayzel ◽  
Tobias Scheffer ◽  
Maik Heistermann

Abstract. In this study, we present RainNet, a deep convolutional neural network for radar-based precipitation nowcasting. Its design was inspired by the U-Net and SegNet families of deep learning models, which were originally designed for binary segmentation tasks. RainNet was trained to predict continuous precipitation intensities at a lead time of 5 min, using several years of quality-controlled weather radar composites provided by the German Weather Service (DWD). That data set covers Germany with a spatial domain of 900 km×900 km and has a resolution of 1 km in space and 5 min in time. Independent verification experiments were carried out on 11 summer precipitation events from 2016 to 2017. In order to achieve a lead time of 1 h, a recursive approach was implemented by using RainNet predictions at 5 min lead times as model inputs for longer lead times. In the verification experiments, trivial Eulerian persistence and a conventional model based on optical flow served as benchmarks. The latter is available in the rainymotion library and had previously been shown to outperform DWD's operational nowcasting model for the same set of verification events. RainNet significantly outperforms the benchmark models at all lead times up to 60 min for the routine verification metrics mean absolute error (MAE) and the critical success index (CSI) at intensity thresholds of 0.125, 1, and 5 mm h−1. However, rainymotion turned out to be superior in predicting the exceedance of higher intensity thresholds (here 10 and 15 mm h−1). The limited ability of RainNet to predict heavy rainfall intensities is an undesirable property which we attribute to a high level of spatial smoothing introduced by the model. At a lead time of 5 min, an analysis of power spectral density confirmed a significant loss of spectral power at length scales of 16 km and below. Obviously, RainNet had learned an optimal level of smoothing to produce a nowcast at 5 min lead time. In that sense, the loss of spectral power at small scales is informative, too, as it reflects the limits of predictability as a function of spatial scale. Beyond the lead time of 5 min, however, the increasing level of smoothing is a mere artifact – an analogue to numerical diffusion – that is not a property of RainNet itself but of its recursive application. In the context of early warning, the smoothing is particularly unfavorable since pronounced features of intense precipitation tend to get lost over longer lead times. Hence, we propose several options to address this issue in prospective research, including an adjustment of the loss function for model training, model training for longer lead times, and the prediction of threshold exceedance in terms of a binary segmentation task. Furthermore, we suggest additional input data that could help to better identify situations with imminent precipitation dynamics. The model code, pretrained weights, and training data are provided in open repositories as an input for such future studies.


Author(s):  
Cansu Görürgöz ◽  
Kaan Orhan ◽  
Ibrahim Sevki Bayrakdar ◽  
Özer Çelik ◽  
Elif Bilgir ◽  
...  

Objectives: The present study aimed to evaluate the performance of a Faster Region-based Convolutional Neural Network (R-CNN) algorithm for tooth detection and numbering on periapical images. Methods: The data sets of 1686 randomly selected periapical radiographs of patients were collected retrospectively. A pre-trained model (GoogLeNet Inception v3 CNN) was employed for pre-processing, and transfer learning techniques were applied for data set training. The algorithm consisted of: (1) the Jaw classification model, (2) Region detection models, and (3) the Final algorithm using all models. Finally, an analysis of the latest model has been integrated alongside the others. The sensitivity, precision, true-positive rate, and false-positive/negative rate were computed to analyze the performance of the algorithm using a confusion matrix. Results: An artificial intelligence algorithm (CranioCatch, Eskisehir-Turkey) was designed based on R-CNN inception architecture to automatically detect and number the teeth on periapical images. Of 864 teeth in 156 periapical radiographs, 668 were correctly numbered in the test data set. The F1 score, precision, and sensitivity were 0.8720, 0.7812, and 0.9867, respectively. Conclusion: The study demonstrated the potential accuracy and efficiency of the CNN algorithm for detecting and numbering teeth. The deep learning-based methods can help clinicians reduce workloads, improve dental records, and reduce turnaround time for urgent cases. This architecture might also contribute to forensic science.


Geophysics ◽  
2019 ◽  
Vol 85 (1) ◽  
pp. V33-V43 ◽  
Author(s):  
Min Jun Park ◽  
Mauricio D. Sacchi

Velocity analysis can be a time-consuming task when performed manually. Methods have been proposed to automate the process of velocity analysis, which, however, typically requires significant manual effort. We have developed a convolutional neural network (CNN) to estimate stacking velocities directly from the semblance. Our CNN model uses two images as one input data for training. One is an entire semblance (guide image), and the other is a small patch (target image) extracted from the semblance at a specific time step. Labels for each input data set are the root mean square velocities. We generate the training data set using synthetic data. After training the CNN model with synthetic data, we test the trained model with another synthetic data that were not used in the training step. The results indicate that the model can predict a consistent velocity model. We also noticed that when the input data are extremely different from those used for the training, the CNN model will hardly pick the correct velocities. In this case, we adopt transfer learning to update the trained model (base model) with a small portion of the target data to improve the accuracy of the predicted velocity model. A marine data set from the Gulf of Mexico is used for validating our new model. The updated model performed a reasonable velocity analysis in seconds.


2020 ◽  
Vol 21 (2) ◽  
pp. 467 ◽  
Author(s):  
Zengyan Xie ◽  
Xiaoya Deng ◽  
Kunxian Shu

Protein–protein interaction (PPI) sites play a key role in the formation of protein complexes, which is the basis of a variety of biological processes. Experimental methods to solve PPI sites are expensive and time-consuming, which has led to the development of different kinds of prediction algorithms. We propose a convolutional neural network for PPI site prediction and use residue binding propensity to improve the positive samples. Our method obtains a remarkable result of the area under the curve (AUC) = 0.912 on the improved data set. In addition, it yields much better results on samples with high binding propensity than on randomly selected samples. This suggests that there are considerable false-positive PPI sites in the positive samples defined by the distance between residue atoms.


2020 ◽  
Vol 17 (4) ◽  
pp. 172988142094434
Author(s):  
Jingbo Chen ◽  
Shengyong Chen ◽  
Linjie Bian

Many pieces of information are included in the front region of a vehicle, especially in windshield and bumper regions. Thus, windshield or bumper region detection is making sense to extract useful information. But the existing windshield and bumper detection methods based on traditional artificial features are not robust enough. Those features may become invalid in many real situations (e.g. occlude, illumination change, viewpoint change.). In this article, we propose a multi-attribute-guided vehicle discriminately region detection method based on convolutional neural network and not rely on bounding box regression. We separate the net into two branches, respectively, for identification (ID) and Model attributes training. Therefore, the feature spaces of different attributes become more independent. Additionally, we embed a self-attention block into our framework to improve the performance of local region detection. We train our model on PKU_VD data set which has a huge number of images inside. Furthermore, we labeled the handcrafted bounding boxes on 5000 randomly picked testing images, and 1020 of them are used for evaluation and 3980 as the training data for YOLOv3. We use Intersection over Union for quantitative evaluation. Experiments were conducted in three different latest convolutional neural network trunks to illustrate the detection performance of the proposed method. Simultaneously, in terms of quantitative evaluation, the performance of our method is close to YOLOv3 even without handcrafted bounding boxes.


Sign in / Sign up

Export Citation Format

Share Document