scholarly journals V-f Controlled Autonomous Wind Energy Conversion System Using Z2 Transformer Connected DSTATCOM

Distributed generation and renewable energy sources are hot research topics from past 10 years or so due to various reasons. The sudden load variation leads to change in voltage and frequency, and if nonlinearity presents, the T.H.D. variations will be more. Power quality controlled devices like DSTATCOM with battery energy storage system (B.E.S.S.) that controlled by pulse width modulation (P.W.M.) based voltage source converter (V.S.C.) in the distribution system would control the voltage, frequency and THD, indirectly power control. This paper presents an autonomous W.E.C.S. with zig-zag (Z2) transformer connected V.S.C. controlled DSTATCOM with BESS and its control scheme. It also shows the various MATLAB simulated results. It also contemplates the various performance parameters from previous methodology. It strategically concludes that the proposed system is effective in controlling voltage and frequency (V-f) and T.H.D. in voltage and current

Author(s):  
Anjana Jain ◽  
R. Saravanakumar ◽  
S. Shankar ◽  
V. Vanitha

Abstract The variable-speed Permanent Magnet Synchronous Generator (PMSG) based Wind Energy Conversion System (WECS) attracts the maximum power from wind, but voltage-regulation and frequency-control of the system in standalone operation is a challenging task A modern-control-based-tracking of power from wind for its best utilization is proposed in this paper for standalone PMSG based hybrid-WECS comprising Battery Energy Storage System (BESS). An Adaptive Synchronous Reference Frame Phase-Locked-Loop (SRF-PLL) based control scheme for load side bi-directional voltage source converter (VSC) is presented for the system. MATLAB/Simulink model is developed for simulation study for the proposed system and the effectiveness of the controller for bi-directional-converter is discussed under different operating conditions: like variable wind-velocity, sudden load variation, and load unbalancing. Converter control scheme enhances the power smoothening, supply-load power-matching. Also it is able to regulate the active & reactive power from PMSG-BESS hybrid system with control of fluctuations in voltage & frequency with respect to varying operating conditions. Proposed controller successfully offers reactive-power-compensation, harmonics-reduction, and power-balancing. The proposed scheme is based on proportional & integral (PI) controller. Also system is experimentally validated in the laboratory-environment and results are presented here.


Batteries ◽  
2020 ◽  
Vol 6 (4) ◽  
pp. 56
Author(s):  
Panyawoot Boonluk ◽  
Apirat Siritaratiwat ◽  
Pradit Fuangfoo ◽  
Sirote Khunkitti

In this work, optimal siting and sizing of a battery energy storage system (BESS) in a distribution network with renewable energy sources (RESs) of distribution network operators (DNO) are presented to reduce the effect of RES fluctuations for power generation reliability and quality. The optimal siting and sizing of the BESS are found by minimizing the costs caused by the voltage deviations, power losses, and peak demands in the distribution network for improving the performance of the distribution network. The simulation results of the BESS installation were evaluated in the IEEE 33-bus distribution network. Genetic algorithm (GA) and particle swarm optimization (PSO) were adopted to solve this optimization problem, and the results obtained from these two algorithms were compared. After the BESS installation in the distribution network, the voltage deviations, power losses, and peak demands were reduced when compared to those of the case without BESS installation.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 188861-188874 ◽  
Author(s):  
Swaminathan Ganesan ◽  
Umashankar Subramaniam ◽  
Ajit A. Ghodke ◽  
Rajvikram Madurai Elavarasan ◽  
Kannadasan Raju ◽  
...  

Power expansions of network to disconnected areas are related with specialized and affordable issues. To examine the power Renewable Power Sources (RES) are used. In this paper, the design of RES based PV based wind generator is proposed. Here voltage source converter is used in the autonomous small scale applications. The both battery energy storage system and the diesel generator will produce the operation as fast as possible compared to other blocks. The main advantage of this system is control the system without any interpretations. AC source is obtained because of the proposed Distributed Generation set acts as an AC source. By utilizing fluffy rationale controller in this framework, to decrease the deviations in the waveforms. A wide assortment of matlab/simulink reproduction results is introduced to exhibit every one of the highlights of the proposed framework.


2020 ◽  
Author(s):  
Maxwel d A Silva Santos ◽  
Luciano Sales Barrosy ◽  
Rafael Lucas Da Silva França ◽  
Flavio Bezerra Costa ◽  
Camila Mara Vital Barrosy ◽  
...  

A microgrid consists of a grid capable of operating in connection to the main interconnected power system or in island mode. This paper deals with a microgrid containing a small hydroelectric power plant (HPP), a battery energy storage system (BESS), a wind energy conversion system (WECS), and a photovoltaic array (PV). The WECS and PV systems are connected to the grid through one full-power voltage source converter (VSC). In order to provide frequency and voltage supports to the microgrid, the VSC is controlled by a virtual synchronous generator (VSG) technique of synchronverter. The considered scenario was divided into three parts: first, the microgrid operates connected to the main system and then it starts operating in island mode; posteriorly, frequency and voltage variations occur due to load variations in the microgrid; finally, the microgrid returns to operate connected to the interconected system. Simulation results have shown that the synchronverter is an alternative to provide efficient frequency and voltage control to a microgrid for both connected and island modes, considering a hybrid generation unit.


For the sake of uninterrupted power supply to the loads we are using renewable energy sources. Among them wind energy and the solar energy is the most familiar renewable energy sources we are using now-a-days. Voltage source converter based high voltage DC transmission is considered as future of offshore power transmission. This paper proposes the high voltage DC power transmission system and maintains system balance during each faults. This results in the voltage and current losses on the switching devices. This strategy implements the flywheel energy storage system based on a squirrel cage induction machine connected in parallel to the grid side converter. It is connected in shunt which present on the grid side circuit of VSC-HVDC based squirrel cage induction motor. Due to this the FESS stores the trapped energy in the DC link during AC side faults for long transmission system using a voltage source converter. When there is insufficient of fault meet the grid at load demand. The series of simulation results we carried out the main part of theFESS system under fault conditions achieved using the software Matlab/Simulink. This project possesses the dynamic performance during ‘steady state’ during normal and fault operating conditions.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2649 ◽  
Author(s):  
Jiashen Teh

The demand response and battery energy storage system (BESS) will play a key role in the future of low carbon networks, coupled with new developments of battery technology driven mainly by the integration of renewable energy sources. However, studies that investigate the impacts of BESS and its demand response on the adequacy of a power supply are lacking. Thus, a need exists to address this important gap. Hence, this paper investigates the adequacy of a generating system that is highly integrated with wind power in meeting load demand. In adequacy studies, the impacts of demand response and battery energy storage system are considered. The demand response program is applied using the peak clipping and valley filling techniques at various percentages of the peak load. Three practical strategies of the BESS operation model are described in this paper, and all their impacts on the adequacy of the generating system are evaluated. The reliability impacts of various wind penetration levels on the generating system are also explored. Finally, different charging and discharging rates and capacities of the BESS are considered when evaluating their impacts on the adequacy of the generating system.


Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2699
Author(s):  
Miguel Montilla-DJesus ◽  
Édinson Franco-Mejía ◽  
Edwin Rivas Trujillo ◽  
José Luis Rodriguez-Amenedo ◽  
Santiago Arnaltes

Direct current microgrids (DCMGs) are currently presented as an alternative solution for small systems that feed sensitive electrical loads into DC. According to the scientific literature, DCMG maintains good voltage regulation. However, when the system is in islanded mode, very pronounced voltage variations are presented, compromising the system’s ability to achieve reliable and stable energy management. Therefore, the authors propose a solution, connecting the electrical network through a grid-tied voltage source converter (GVSC) in order to reduce voltage variations. A coordinated control strategy between the DCMG and GVSC is proposed to regulate the DC voltage and find a stable power flow between the various active elements, which feed the load. The results show that the control strategy between the GVSC and DCMG, when tested under different disturbances, improves the performance of the system, making it more reliable and stable. Furthermore, the GVSC supports the AC voltage at the point of common coupling (PCC) without reducing the operating capacity of the DCMG and without exceeding even its most restrictive limit. All simulations were carried out in MATLAB 2020.


Sign in / Sign up

Export Citation Format

Share Document