scholarly journals Vibration Analysis on Luffa Fiber Reinforced Polyester composites

The objective of this process is to investigate the free vibration characteristics of luffa fiber reinforced polyester composites. It also includes the experimental investigation on density and hardness of luffa fiber polyester reinforced composites. The simple laminated plate is fabricated using compression molding machines under the pressure 17MPa.The composite specimen were subjected to modal analysis to obtain natural frequencies and damping values. Damping values obtained are increasing according to the increase in weight percentage. The damping values obtained are higher and ever seen in natural fiber

2021 ◽  
Vol 20 (1) ◽  
pp. 1
Author(s):  
Muhammad Ghozali ◽  
Dody Ariawan ◽  
Eko Surojo

<p>Natural fiber reinforced composites is one materials potentially developing in Indonesia. One of biggest problem with composites specimen is its void. One properties to find out void of composites is composites density value. The objective of research is to investigate the effect of fiber alkali (NaOH) treatment and microcrystalline cellulose (MCC) addition on density value of cantala fiber reinforced unsaturated polyester composites. Firstly, cantala fibers was submerged into alkali (NaOH) 6% solution for 0, 3, 6, 9, and 12 hours. Furthermore, the fiber was washed using acetid acid and then using clean water to reach pH 7. Thereafter, cantala fiber was dried in the oven for 10 hours at temperature 60<sup>0</sup>C. Composites was composed of cantala fiber, unsaturated polyester polymer matrix, and microcrystalline cellulose according to the composition with volume fraction 30%. Composites was casted using compression molding method with compressive strength of 10 MPa for 12 hours. All specimens of composites undertake post cure for 2 hours at 60<sup>0</sup>C. Density test was conducted using densimeter by calculating the density of composites in the air and the water. The result of research showed that the longer the alkali treatment time and the more addition of microcrystalline cellulose (MCC) filler, the higher is the composites density. The higher density value of cantala fiber reinforced unsaturated polyester is alkali treatment 6 hours, which was 1.223 gr/cm<sup>3</sup>.</p>


2011 ◽  
Vol 110-116 ◽  
pp. 350-356
Author(s):  
S.H. Hosseini Hashemi ◽  
S. Fazeli

In this paper the free vibration analysis of a fiber reinforced mindlin plate is presented.energy method based on the ritz method is used to obtain natural frequencies of the plate. Displacement fields of the plate are postulated by trigonometric series function. depending on the arrangement and orientation of the fibers, mindlin plate is assumed to be orthotropic or monoclinic.this analysis is useful to study the mechanical behavior of an angle ply lamina and effect of fiber orientation on the frequency response of the plate.the analysis can be extended for the laminates where the analytical solutions are not available. Finally the results are compared with those reported in the literature.


2019 ◽  
Vol 12 (1) ◽  
pp. 4-76 ◽  
Author(s):  
Krittirash Yorseng ◽  
Mavinkere R. Sanjay ◽  
Jiratti Tengsuthiwat ◽  
Harikrishnan Pulikkalparambil ◽  
Jyotishkumar Parameswaranpillai ◽  
...  

Background: This era has seen outstanding achievements in materials science through the advances in natural fiber-based composites. The new environmentally friendly and sustainability concerns have imposed the chemists, biologists, researchers, engineers, and scientists to discover the engineering and structural applications of natural fiber reinforced composites. Objective: To present a comprehensive evaluation of information from 2000 to 2018 in United States patents in the field of natural fibers and their composite materials. Methods: The patent data have been taken from the external links of US patents such as IFI CLAIMS Patent Services, USPTO, USPTO Assignment, Espacenet, Global Dossier, and Discuss. Results: The present world scenario demands the usage of natural fibers from agricultural and forest byproducts as a reinforcement material for fiber reinforced composites. Natural fibers can be easily extracted from plants and animals. Recently natural fiber in nanoscale is preferred over micro and macro scale fibers due to its superior thermo-mechanical properties. However, the choice of macro, micro, and nanofibers depends on their applications. Conclusion: This document presents a comprehensive evaluation of information from 2000 to 2018 in United States patents in the field of natural fibers and their composite materials.


Author(s):  
Haasith Chittimenu ◽  
Monesh Pasupureddy ◽  
Chandrasekar Muthukumar ◽  
Senthilkumar Krishnasamy ◽  
Senthil Muthu Kumar Thiagamani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document