Experimental Investigation and Mathematical Modeling of Longitudinally Placed Natural Fiber Reinforced Polymeric Composites including Interphase Volume Fraction

Author(s):  
Sagar Chokshi ◽  
Piyush Gohil
2020 ◽  
Vol 1012 ◽  
pp. 14-19
Author(s):  
Michelle Souza Oliveira ◽  
Fabio da Costa Garcia Filho ◽  
Fernanda Santos da Luz ◽  
Artur Camposo Pereira ◽  
Luana Cristyne da Cruz Demosthenes ◽  
...  

Composite materials are being extensively studied for ballistic armor. Their main advantage is connected to the possibility of deeply reducing weight and costs by maintaining high performances in terms of strength and security. Epoxy composites are reinforced with natural fibers which are replacing other synthetic reinforcement materials. Composites are prepared using polymers as matrix material because of ease of production with different reinforcements. The mechanical strength of the natural fiber reinforced polymer composites has been compared with synthetic fiber reinforced polymer composites and it is found that for achieving equivalent mechanical strength of the material, the volume fraction of the natural fiber should be much higher than synthetic fiber. This work being an experimental study on untreated “as received” fique fabric-reinforced epoxy composites, to demonstrate the potential of this renewable source of natural fiber for use in a number of applications.


Author(s):  
G. VELMURUGAN ◽  
D. VADIVEL ◽  
R. ARRAVIND ◽  
A. MATHIAZHAGAN ◽  
S.P. VENGATESAN

This project mainly deals with analysis of tensile properties of Palmyra fiber Reinforced Epoxy Composite that is suitable for automobile application. First, the property of material was obtained on the basis of some assumptions (i.e., Rule of Mixture) and was modeled with reference to ASTM D638. Here the simulation was carried out on specimen under different fiber volume fraction and fiber length. The present work includes the Analysis of Palmyra Fiber Reinforced Epoxy Composites using FEA with various fiber volume fractions and these results were validated with the experimental result. The tensile property of Palmyra fiber composite material can be obtained by using tensometer.During the tensile load, the maximum strain, stress and displacement were obtained and, then this experimental result was compared with the analytical results and the error percentage of these results were calculated.


2021 ◽  
Vol 20 (1) ◽  
pp. 1
Author(s):  
Muhammad Ghozali ◽  
Dody Ariawan ◽  
Eko Surojo

<p>Natural fiber reinforced composites is one materials potentially developing in Indonesia. One of biggest problem with composites specimen is its void. One properties to find out void of composites is composites density value. The objective of research is to investigate the effect of fiber alkali (NaOH) treatment and microcrystalline cellulose (MCC) addition on density value of cantala fiber reinforced unsaturated polyester composites. Firstly, cantala fibers was submerged into alkali (NaOH) 6% solution for 0, 3, 6, 9, and 12 hours. Furthermore, the fiber was washed using acetid acid and then using clean water to reach pH 7. Thereafter, cantala fiber was dried in the oven for 10 hours at temperature 60<sup>0</sup>C. Composites was composed of cantala fiber, unsaturated polyester polymer matrix, and microcrystalline cellulose according to the composition with volume fraction 30%. Composites was casted using compression molding method with compressive strength of 10 MPa for 12 hours. All specimens of composites undertake post cure for 2 hours at 60<sup>0</sup>C. Density test was conducted using densimeter by calculating the density of composites in the air and the water. The result of research showed that the longer the alkali treatment time and the more addition of microcrystalline cellulose (MCC) filler, the higher is the composites density. The higher density value of cantala fiber reinforced unsaturated polyester is alkali treatment 6 hours, which was 1.223 gr/cm<sup>3</sup>.</p>


2019 ◽  
Vol 948 ◽  
pp. 181-185
Author(s):  
Heru Santoso Budi Rochardjo ◽  
Muhammad Ridlo

In the last decades, natural fiber composites have received much attention as important structural materials for lightweight components in automotive, and space industries because of low density, high specific strength, and environment-friendly materials. Some natural fibers, however, still not applied in more useful structure, one of which is the frond fiber of snake fruit (salacca zalacca). This fiber is usually just burned or fired as the agricultural waste. The present paper presents the result of the development of frond salacca fiber as the wear component of natural fiber reinforced phenolic. In this composite, the fiber and the phenolic are in the form of powder. The variation of fiber volume fraction was used as the main factor in the tribology characteristics of the composite. The specific wear and also the hardness is then compared to that of the existed commercially available motorbike brake pad as a comparison.


2017 ◽  
Vol 54 (4) ◽  
pp. 601-605
Author(s):  
Paulina Spanu ◽  
Catalin Gheorghe Amza ◽  
Gabriela Dinu

This paper presents the results of the experimental researches obtained in the three-point test of the glass-fiber-reinforced polymeric composites. Mathematical modeling of experimental results was performed using a virtual instrument (VI) developed in the graphical programming language called LabVIEW. In order to process the experimental data and display the results, the virtual instrument (VI) allows both the reading of experimental data from a saved text file from the same folder as the current VI file and the direct entry of experimental values into a control element disposed on its front panel. The virtual instrument described in this article is part of a more complex project used for the mathematical modeling of the experimental data obtained in determining the physic-mechanical characteristics of glass fiber randomly reinforced polymeric composites.


2018 ◽  
Vol 52 (27) ◽  
pp. 3701-3713 ◽  
Author(s):  
Xiaoshuang Xiong ◽  
Shirley Z Shen ◽  
Lin Hua ◽  
Xiang Li ◽  
Xiaojin Wan ◽  
...  

Natural fiber-reinforced composites are increasingly being used in the industry. The fiber–matrix interfacial properties of the composites are influenced by many factors, including chemical treatment of the natural fiber, type of polymer matrix, composites fabrication method, and process and the service environment of the composites. In this paper, a modified shear-lag model based on a cohesive fiber/matrix interface is proposed and applied to the analysis of the stress–transfer characteristics and the tensile properties of unidirectional short flax fiber-reinforced composites. The model takes into account of the interfacial shear stiffness, bonding strength between fiber end face and matrix, fiber aspect ratio and fiber volume fraction. 3D finite element models of the composites using a cohesive zone method are used to verify the accuracy of the modified shear-lag model. The fiber tensile strength and the composite tensile elastic modulus are significantly influenced by the interfacial shear stiffness, fiber aspect ratio, and fiber volume fraction. The bonding strength between the fiber end face and the matrix only has an effect when the interfacial shear stiffness is low. The predicted results from the modified shear-lag model show good agreement with the finite element analysis and experimental results in the literature. The modified cohesive shear-lag model provides a simple and effective method for analyzing fiber axial stress, shear stress in the fiber/matrix interface, and tensile elastic modulus of the final composite.


Author(s):  
Yibin Xue ◽  
Scott A. Fletcher ◽  
Kunpeng Wang

Micromechanics-based simulations were conducted to evaluate the linear and nonlinear properties of natural fiber-reinforced plastic composites with fibers in various waving and kinked forms. Natural fibers, such as woodfibers and fibers from plants, have length-aspect ratio of longitudinal and transverse at or greater than 20. At such high aspect ratio, the natural fiber normally presents in waving, bending, twisting, kinking morphology in the composites. This paper presents a series of micromechanical simulations to predict the elastic and nonlinear elastic behaviors of natural fiber-reinforced plastic composites (NF-PCs) considering the effects of fiber kinking, waving, and arrangements on the stress-strain relationship. A set of three-dimensional unit cells (UC) were developed to mimic various fiber morphologies with the fiber volume fraction of fifty percent, a typical fiber volume fraction for the natural fiber plastic composites. Periodic displacement boundary conditions were implemented on the UC to simulate a unidirectional strain field. The homogenized anisotropic stress-strain relations for NF-PCs were predicted by postulating nonlinear behavior of plastic matrix and perfect and imperfect interface between the NF and the matrix. Stress distributions in the natural fiber were presented as a function of the fiber aspect ratio and the fiber waving and kinking forms. Even though, the high fiber aspect ratio provides relatively high elastic modulus and nonlinear hardening, it also induces high stresses or stress concentration in the fiber that may result in earlier failure of the fiber when the composites undergone a relatively large deformations (&gt; 4%).


Sign in / Sign up

Export Citation Format

Share Document