scholarly journals The Effect of Alkali Treatment And Microcrystalline Cellulose Addition on Density Value of Cantala Fiber Reinforced Unsaturated Polyester Composites

2021 ◽  
Vol 20 (1) ◽  
pp. 1
Author(s):  
Muhammad Ghozali ◽  
Dody Ariawan ◽  
Eko Surojo

<p>Natural fiber reinforced composites is one materials potentially developing in Indonesia. One of biggest problem with composites specimen is its void. One properties to find out void of composites is composites density value. The objective of research is to investigate the effect of fiber alkali (NaOH) treatment and microcrystalline cellulose (MCC) addition on density value of cantala fiber reinforced unsaturated polyester composites. Firstly, cantala fibers was submerged into alkali (NaOH) 6% solution for 0, 3, 6, 9, and 12 hours. Furthermore, the fiber was washed using acetid acid and then using clean water to reach pH 7. Thereafter, cantala fiber was dried in the oven for 10 hours at temperature 60<sup>0</sup>C. Composites was composed of cantala fiber, unsaturated polyester polymer matrix, and microcrystalline cellulose according to the composition with volume fraction 30%. Composites was casted using compression molding method with compressive strength of 10 MPa for 12 hours. All specimens of composites undertake post cure for 2 hours at 60<sup>0</sup>C. Density test was conducted using densimeter by calculating the density of composites in the air and the water. The result of research showed that the longer the alkali treatment time and the more addition of microcrystalline cellulose (MCC) filler, the higher is the composites density. The higher density value of cantala fiber reinforced unsaturated polyester is alkali treatment 6 hours, which was 1.223 gr/cm<sup>3</sup>.</p>

2020 ◽  
Vol 29 ◽  
pp. 84-92
Author(s):  
Md. Sahadat Hossain ◽  
Mashrafi Bin Mobarak ◽  
Farzana Khan Rony ◽  
Sazia Sultana ◽  
Monika Mahmud ◽  
...  

Concerning the importance of composite material for multi-purpose applications, an attempt has been taken to synthesize composites using natural fiber with unsaturated polyester resin. Since the use of synthetic polymer plays a key role in polluting the environment, we have used natural fiber (banana fiber) as an alternative source. Our approach dealt with the preparation of reinforced composites by hand lay-up technique using 20 % banana fiber (by weight) as reinforcing materials. Several techniques were applied to characterize synthesized composites e.g. universal testing machine (UTM), Fourier transform infrared (FT-IR) spectroscopy, and scanning electron microscopy (SEM). UTM facilitated the measurement of the tensile strength (TS), tensile modulus (TM), elongation at break (EB), bending strength (BS), and bending modulus (BM) while functional groups were confirmed by FT-IR and the morphology of the composites was investigated by SEM. Observed results revealed that the TS, TM, BS, and BM followed an increasing fashion of 100%, 53%, 75%, and 55% respectively with respect to the matrix materials. On the other hand, the EB of the composite reduced drastically by 50%. Hence, higher mechanical properties were obtained for the banana fiber reinforced composites (BFRC) than the unsaturated polyester resin (UPR) matrix.


2018 ◽  
Vol 280 ◽  
pp. 353-360 ◽  
Author(s):  
Luqman Musa ◽  
A.R. Rozyanty ◽  
S.F. Zhafer

Natural fiber reinforced polymer composites are generally lower in mechanical performance compared to synthetic fiber reinforced polymer composites. However, this disadvantage can be improved via chemical modification of the natural fiber and hybridization with synthetic fiber. In this study, kenaf bast fiber was used as reinforcement in unsaturated polyester composites. It was subjected to chemical modification with maleic anhydride at various treatment time i.e. 60, 90 and 120 minutes prior to composites production. The untreated and MA treated kenaf bast fiber were hybridized with 10 weight percent of glass fiber to produce kenaf bast/glass fiber reinforced unsaturated polyester composites. The effect of treatment time on weight percent gain and functional group changes via infra-red spectra of kenaf bast fiber were investigated. The effect of treatment time on tensile properties of kenaf bast fiber and kenaf bast/glass fiber reinforced unsaturated polyester composites were also studied. It was revealed that the weight percent gain of kenaf bast fiber increased with the increasing of treatment time. The increasing of treatment time resulted in the enhancement of tensile strength and modulus of kenaf bast fiber and kenaf bast/glass fiber reinforced unsaturated polyester composites which were attributed to the presence of C=C bonds of maleic anhydride and has been proven through fourier transform infrared spectrum.


2021 ◽  
Vol 904 ◽  
pp. 447-452
Author(s):  
Anteneh Geremew ◽  
Pieter De Winne ◽  
Tamene Adugna ◽  
Hans De Backer

Ongoing studies show that an effective demand for using natural fibers as a substitution of an artificial fiber in fiber-reinforced composites formation has increased their applicability in an industrial area worldwide. The hydrophobic nature of natural fiber makes week adhesion among the cellulose fiber and matrix components; these problems are usually encountered in fiber-reinforced composites production. To overcome such a limitation of a cellulose fiber, specific physical and chemical treatment strategies were advised by researchers around the world for surface modification of natural cellulose fibers. One of the most basic and efficient surface modification approaches adopted today by the researchers was alkali treatment, widely used in natural fiber composites formation. This technique effectively improved the Mechanical property of natural cellulose fiber, such as tensile strength and flexural properties, while the impact strength result was reduced.


2001 ◽  
Author(s):  
Nestor Pedro Giacomini ◽  
Jürgen Knothe ◽  
Octavio Pimenta Reis Neto ◽  
Alcides Lopes Leao

The objective of this process is to investigate the free vibration characteristics of luffa fiber reinforced polyester composites. It also includes the experimental investigation on density and hardness of luffa fiber polyester reinforced composites. The simple laminated plate is fabricated using compression molding machines under the pressure 17MPa.The composite specimen were subjected to modal analysis to obtain natural frequencies and damping values. Damping values obtained are increasing according to the increase in weight percentage. The damping values obtained are higher and ever seen in natural fiber


2013 ◽  
Vol 594-595 ◽  
pp. 828-831
Author(s):  
Mohd Hafiz Zamri ◽  
Hazizan Md Akil ◽  
Zainal Ariffin Mohd Ishak

Pultruded Kenaf Fiber Reinforced Unsaturated Polyester Composites (PKRC) was produced successfully using pultrusion technique at 70 wt% of fiber loading. Kenaf fiber 1400, 2200 and 3300 tex were used to produce PKRC with and without surfacing veil (SV). The aim of this study was to compare the properties of PKRC with and without SV after 200 days of natural weathering exposure. For natural weathering exposure study, PKRC 1400 specimen absorbed the least moisture followed by 2200 and the highest was 3300 tex. PKRC with SV showed lower moisture uptake than PKRC without SV in all the given environments.


2014 ◽  
Vol 353 ◽  
pp. 84-89 ◽  
Author(s):  
C.J. Silva ◽  
T.H.F. de Andrade ◽  
E.G. Silva ◽  
Antônio Gilson Barbosa de Lima

Studies in polymer composites reinforced with vegetable fiber show that they are enough sensitive to influences from environmental agents such as water and temperature. The moisture causes degradation of the mechanical properties of natural fiber reinforced composites to a large extent when compared to synthetic fiber reinforced composites. This is a consequence of the higher moisture absorption, and the hydrofilic nature of the natural fiber. In this sense, the purpose of this work is to study theoretically the water absorption in unsaturated polyester composites reinforced with caroá natural fiber (Neoglazioviavariegata) at the temperature 50°C. The composite had a weight composition of 30% caroá and 70% unsaturated polyester resin and dimensions of 20× 20× 3 mm3. Results of the average moisture content and moisture content distribution during the absorption process are presented and analyzed. Comparison between numerical and experimental data of the average moisture content presented good agreement. We conclude that the water absorption rate is faster in the vertex region of the composites.


2019 ◽  
Vol 12 (1) ◽  
pp. 4-76 ◽  
Author(s):  
Krittirash Yorseng ◽  
Mavinkere R. Sanjay ◽  
Jiratti Tengsuthiwat ◽  
Harikrishnan Pulikkalparambil ◽  
Jyotishkumar Parameswaranpillai ◽  
...  

Background: This era has seen outstanding achievements in materials science through the advances in natural fiber-based composites. The new environmentally friendly and sustainability concerns have imposed the chemists, biologists, researchers, engineers, and scientists to discover the engineering and structural applications of natural fiber reinforced composites. Objective: To present a comprehensive evaluation of information from 2000 to 2018 in United States patents in the field of natural fibers and their composite materials. Methods: The patent data have been taken from the external links of US patents such as IFI CLAIMS Patent Services, USPTO, USPTO Assignment, Espacenet, Global Dossier, and Discuss. Results: The present world scenario demands the usage of natural fibers from agricultural and forest byproducts as a reinforcement material for fiber reinforced composites. Natural fibers can be easily extracted from plants and animals. Recently natural fiber in nanoscale is preferred over micro and macro scale fibers due to its superior thermo-mechanical properties. However, the choice of macro, micro, and nanofibers depends on their applications. Conclusion: This document presents a comprehensive evaluation of information from 2000 to 2018 in United States patents in the field of natural fibers and their composite materials.


Sign in / Sign up

Export Citation Format

Share Document