scholarly journals Achieving Authentication of Remotely Stored Data

Data storage over cloud is a demanding service but it is vulnerable for various attacks. It is required to provide strong security to this data. An authenticity of the data on remote storage is necessary but data owners have to trust on cloud storage for their outsourced data. There is a need of some mechanism to check correctness of the data without compromising its confidentiality. We have studied homomorphic algorithms so that can be applied on the cipher text. Aim of the framework designed here is to enable any authentic user or auditor to verify hash value generated by owner with the hash value of encrypted data which is stored at remote storage for assuring authentication of the data. This can be done with strong mathematical cryptographic algorithms those can be used in the public environment and can provide better performance complexity.

Information ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 142
Author(s):  
Weijing You ◽  
Lei Lei ◽  
Bo Chen ◽  
Limin Liu

By only storing a unique copy of duplicate data possessed by different data owners, deduplication can significantly reduce storage cost, and hence is used broadly in public clouds. When combining with confidentiality, deduplication will become problematic as encryption performed by different data owners may differentiate identical data which may then become not deduplicable. The Message-Locked Encryption (MLE) is thus utilized to derive the same encryption key for the identical data, by which the encrypted data are still deduplicable after being encrypted by different data owners. As keys may be leaked over time, re-encrypting outsourced data is of paramount importance to ensure continuous confidentiality, which, however, has not been well addressed in the literature. In this paper, we design SEDER, a SEcure client-side Deduplication system enabling Efficient Re-encryption for cloud storage by (1) leveraging all-or-nothing transform (AONT), (2) designing a new delegated re-encryption (DRE), and (3) proposing a new proof of ownership scheme for encrypted cloud data (PoWC). Security analysis and experimental evaluation validate security and efficiency of SEDER, respectively.


2021 ◽  
pp. 20-32
Author(s):  
admin admin ◽  

Recently, the security of heterogeneous multimedia data becomes a very critical issue, substantially with the proliferation of multimedia data and applications. Cloud computing is the hidden back-end for storing heterogeneous multimedia data. Notwithstanding that using cloud storage is indispensable, but the remote storage servers are untrusted. Therefore, one of the most critical challenges is securing multimedia data storage and retrieval from the untrusted cloud servers. This paper applies a Shamir Secrete-Sharing scheme and integrates with cloud computing to guarantee efficiency and security for sensitive multimedia data storage and retrieval. The proposed scheme can fully support the comprehensive and multilevel security control requirements for the cloud-hosted multimedia data and applications. In addition, our scheme is also based on a source transformation that provides powerful mutual interdependence in its encrypted representation—the Share Generator slices and encrypts the multimedia data before sending it to the cloud storage. The extensive experimental evaluation on various configurations confirmed the effectiveness and efficiency of our scheme, which showed excellent performance and compatibility with several implementation strategies.


2021 ◽  
Vol 13 (11) ◽  
pp. 279
Author(s):  
Siti Dhalila Mohd Satar ◽  
Masnida Hussin ◽  
Zurina Mohd Hanapi ◽  
Mohamad Afendee Mohamed

Managing and controlling access to the tremendous data in Cloud storage is very challenging. Due to various entities engaged in the Cloud environment, there is a high possibility of data tampering. Cloud encryption is being employed to control data access while securing Cloud data. The encrypted data are sent to Cloud storage with an access policy defined by the data owner. Only authorized users can decrypt the encrypted data. However, the access policy of the encrypted data is in readable form, which results in privacy leakage. To address this issue, we proposed a reinforcement hiding in access policy over Cloud storage by enhancing the Ciphertext Policy Attribute-based Encryption (CP-ABE) algorithm. Besides the encryption process, the reinforced CP-ABE used logical connective operations to hide the attribute value of data in the access policy. These attributes were converted into scrambled data along with a ciphertext form that provides a better unreadability feature. It means that a two-level concealed tactic is employed to secure data from any unauthorized access during a data transaction. Experimental results revealed that our reinforced CP-ABE had a low computational overhead and consumed low storage costs. Furthermore, a case study on security analysis shows that our approach is secure against a passive attack such as traffic analysis.


2020 ◽  
Vol 17 (4) ◽  
pp. 1937-1942
Author(s):  
S. Sivasankari ◽  
V. Lavanya ◽  
G. Saranya ◽  
S. Lavanya

These days, Cloud storage is gaining importance among individual and institutional users. Individual and foundations looks for cloud server as a capacity medium to diminish their capacity load under nearby devices. In such storage services, it is necessary to avoid duplicate content/repetitive storage of same data to be avoided. By reducing the duplicate content in cloud storage reduces storage cost. De-duplication is necessary when multiple data owner outsource the same data, issues related to security and ownership to be considered. As the cloud server is always considered to be non trusted, as it is maintained by third party, thus the data stored in cloud is always encrypted and uploaded, thus randomization property of encryption affects de-duplication. It is necessary to propose a serverside de-duplication scheme for handling encrypted data. The proposed scheme allows the cloud server to control access to outsourced data even when the ownership changes dynamically.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Lingwei Song ◽  
Dawei Zhao ◽  
Xuebing Chen ◽  
Chenlei Cao ◽  
Xinxin Niu

How to verify the integrity of outsourced data is an important problem in cloud storage. Most of previous work focuses on three aspects, which are providing data dynamics, public verifiability, and privacy against verifiers with the help of a third party auditor. In this paper, we propose an identity-based data storage and integrity verification protocol on untrusted cloud. And the proposed protocol can guarantee fair results without any third verifying auditor. The theoretical analysis and simulation results show that our protocols are secure and efficient.


Author(s):  
Anubhav Pandit

Data deduplication is necessary for corporations to minimize the hidden charges linked with backing up their data using Public Cloud platform. Incapable data storage on its own can become improvident, and such problem are enlarging in the Public Cloud at other and scattered satisfied confirmed storage structure are creating multiple clone of single account for collating or other purposes. Deduplication is friendly in cost shrinking by lengthening the benefit of a precise volume of data. Miserably, data duplicity having several safety constraints, so more than one encoding is appropriate to validate the details. There is a system for dynamic Information-Locking and Encoding with Convergent Encoding. In this Information-Locking and Encoding with Convergent Encoding, the data is coded first and then the cipher text is encoded once more. Chunk volume is used for deduplication to diminish disk capacity. The same segments would still be encrypted in the same cipher message. The format of the key neither be abbreviated from encrypted chunk data by the hacker. The comprehension is also guarded from the cloud server. The center of attention of this document is to reducing disk storage and provides protection for online cloud deduplication.


Author(s):  
Deepika. N ◽  
Durga. P ◽  
Gayathri. N ◽  
Murugesan. M

The cloud security is one of the essential roles in cloud, here we can preserve our data into cloud storage. More and more clients would like to keep their data to PCS (public cloud servers) along with the rapid development of cloud computing. Cloud storage services allow users to outsource their data to cloud servers to save local data storage costs. Multiple verification tasks from different users can be performed efficiently by the auditor and the cloud-stored data can be updated dynamically. It makes the clients check whether their outsourced data is kept intact without downloading the whole data. In our system we are using the own auditing based on the token generation. Using this key generation technique compare the key values from original keys we can find out the changes about the file. A novel public verification scheme for cloud storage using in distinguishability obfuscation, which requires a lightweight computation on the auditor and delegate most computation to the cloud. Not only stored also the content will be encrypted in the cloud server. If anyone try to hack at the cloud end is not possible to break the two different blocks. The security of our scheme under the strongest security model. They need first decrypt the files and also combine the splitted files from three different locations. This is not possible by anyone. Anyone can download the files from the server with file holder permission. At the time of download key generated (code based key generation) and it will send to the file owner. We can download the file need to use the key for authentication and some other users want to download file owner permission is necessary.


Author(s):  
Jia Hua-Ping ◽  
Zhao Jun-Long ◽  
Liu Jun

Cardiovascular disease is one of the major diseases that threaten the human health. But the existing electrocardiograph (ECG) monitoring system has many limitations in practical application. In order to monitor ECG in real time, a portable ECG monitoring system based on the Android platform is developed to meet the needs of the public. The system uses BMD101 ECG chip to collect and process ECG signals in the Android system, where data storage and waveform display of ECG data can be realized. The Bluetooth HC-07 module is used for ECG data transmission. The abnormal ECG can be judged by P wave, QRS bandwidth, and RR interval. If abnormal ECG is found, an early warning mechanism will be activated to locate the user’s location in real time and send preset short messages, so that the user can get timely treatment, avoiding dangerous occurrence. The monitoring system is convenient and portable, which brings great convenie to the life of ordinary cardiovascular users.


2019 ◽  
Vol 13 (4) ◽  
pp. 356-363
Author(s):  
Yuezhong Wu ◽  
Wei Chen ◽  
Shuhong Chen ◽  
Guojun Wang ◽  
Changyun Li

Background: Cloud storage is generally used to provide on-demand services with sufficient scalability in an efficient network environment, and various encryption algorithms are typically applied to protect the data in the cloud. However, it is non-trivial to obtain the original data after encryption and efficient methods are needed to access the original data. Methods: In this paper, we propose a new user-controlled and efficient encrypted data sharing model in cloud storage. It preprocesses user data to ensure the confidentiality and integrity based on triple encryption scheme of CP-ABE ciphertext access control mechanism and integrity verification. Moreover, it adopts secondary screening program to achieve efficient ciphertext retrieval by using distributed Lucene technology and fine-grained decision tree. In this way, when a trustworthy third party is introduced, the security and reliability of data sharing can be guaranteed. To provide data security and efficient retrieval, we also combine active user with active system. Results: Experimental results show that the proposed model can ensure data security in cloud storage services platform as well as enhance the operational performance of data sharing. Conclusion: The proposed security sharing mechanism works well in an actual cloud storage environment.


Author(s):  
Maryam Hammami ◽  
Hatem Bellaaj

The Cloud storage is the most important issue today. This is due to a rapidly changing needs and a huge mass of varied and important data to back up. In this paper, we describe a work in progress and propose a flexible system architecture for data storage in the Cloud. This system is centered on the Data Manager module. This module provides various functions such as the dispersion of data in fragments, encryption and storage of fragments... etc. This architecture proves to be very relevant. It ensures consistency between different components. On the other hand, it ensures the security and availability of data.


Sign in / Sign up

Export Citation Format

Share Document