scholarly journals Optimum Location and Sizing of DG with Network Reconfiguration in Distribution System

A new technique for energy loss reduction for distribution networks is obtainable. It is based onnetwork reconfigurationand algorithms for radial network study. A method for the reconfiguration of distribution system with Distributed Generation (DG) since consistency and power loss is suggested. in this paper below ordinary working situations. Primarily a BPSO algorithm based tie-switches location is conceded out at end nodes taking physical limitations and then preceded by fixing and sizing of DG at the tie-switches location usingFBS optimization method. Before reconfiguration, tieswitch will be in open situation. Reliability at load points is calculated using load flow analysis.Energetic coding is used for discovery the minimal shortcut path from resource to the load. A discover algorithm has been formulate for the network reconfiguration difficulty, since tie-switch and DGs for loss minimization and reliability to improve the load necessity, power stability equations and voltage parameters. The planned approach has been tested on IEEE 33-node radial distribution Networks systems.

The main aim of the distribution system is delivery the power to the consumers. Because of, aging of electrical infrastructure, old control mechanism, increased power demand causing exploitation of the present electrical networks leads to low voltage profile, more active and reactive power loss with various power quality related issues causing poor network operation. In this method maximization of voltage profile with energy loss minimization is carried using network reconfiguration along with optimal siting of the distributed generation (DG). The proposed methodology is carried out on five bus system. The obtained results are impressive interms of voltage stability and power loss reduction.


Author(s):  
Ambika Prasad Hota ◽  
Sivkumar Mishra

In this paper, a branch exchange based heuristic network reconfiguration method is proposed for obtaining an optimal network in a deregulated power system. A unique bus identification scheme is employed which makes the load flow and loss calculation faster due to its reduced search time under varying network topological environment. The proposed power loss allocation technique eliminates the effect of cross-term analytically from the loss formulation without any assumptions and approximations. The effectiveness of the proposed reconfiguration and loss allocation methods are investigated by comparing the results obtained by the present approach with that of the existing “Quadratic method” using a 33-bus radial distribution system with/without DGs.


2021 ◽  
Vol 11 (4) ◽  
pp. 7311-7320
Author(s):  
I. C. Barutcu

Harmonic penetration can be problematic by the growing interconnection of Wind Turbines (WTs) in distribution networks. Since the active power outputs of WTs and loads in the distribution system have uncertainties, the optimal WT penetration level problem can be considered to have a stochastic nature. In this study, this problem is taken into account in the stochastic optimization method with the consideration of uncertainties in wind speed and distribution network load profile. Chance constraint programming is taken into account in the determination of optimal WT penetration levels by applying the Genetic Algorithm (GA) along with Monte Carlo Simulation (MCS). The harmonic power flow analysis based on the decoupled harmonic load flow approach is employed in the distorted distribution network. Chance constraints are considered for the harmonic issues such as the Total Harmonic Distortion of Voltage (VTHD), Individual Harmonic Distortion of Voltage (VIHDh), and Root Mean Square of Voltage (VRMS).


Author(s):  
Yahiaoui Merzoug ◽  
Bouanane Abdelkrim ◽  
Boumediene Larbi

In recent years, the reconfiguration of the distribution network has been proclaimed as a method for realizing power savings, with virtually zero cost. The current trend is to design distribution networks with a mesh network structure, but to operate them radially. This is achieved by the establishment of an appropriate number of switchable branches which allow the realization of a radial configuration capable of supplying all of the normal defects in the box of permanent defect. The purpose of this article is to find an optimal reconfiguration using a Meta heuristic method, namely the particle swarm optimization method (PSO), to reduce active losses and voltage deviations by taking into account certain technical constraints. The validity of this method is tested on a 33-IEEE test network and the results obtained are compared with the results of basic load flow.


Author(s):  
Sayed Mir Shah Danish ◽  
Mikaeel Ahmadi ◽  
Atsushi Yona ◽  
Tomonobu Senjyu ◽  
Narayanan Krishna ◽  
...  

AbstractThe optimal size and location of the compensator in the distribution system play a significant role in minimizing the energy loss and the cost of reactive power compensation. This article introduces an efficient heuristic-based approach to assign static shunt capacitors along radial distribution networks using multi-objective optimization method. A new objective function different from literature is adapted to enhance the overall system voltage stability index, minimize power loss, and to achieve maximum net yearly savings. However, the capacitor sizes are assumed as discrete known variables, which are to be placed on the buses such that it reduces the losses of the distribution system to a minimum. Load sensitive factor (LSF) has been used to predict the most effective buses as the best place for installing compensator devices. IEEE 34-bus and 118-bus test distribution systems are utilized to validate and demonstrate the applicability of the proposed method. The simulation results obtained are compared with previous methods reported in the literature and found to be encouraging.


SCITECH Nepal ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. 1-7
Author(s):  
Avinash Khatri KC ◽  
Tika Ram Regmi

An electric distribution system plays an important role in achieving satisfactory power supply. The quality of power is measured by voltage stability and profile of voltage. The voltage profile is affected by the losses in distribution system. As the load is mostly inductive on the distribution system and requires large reactive power, most of the power quality problems can be resolved with requisite control of reactive power. Capacitors are often installed in distribution system for reactive power compensation. This paper presents two stage procedures to identify the location and size of capacitor bank. In the first stage, the load flow is carried out to find the losses of the system using sweep algorithm. In the next stage, different size of capacitors are initialized and placed in each possible candidate bus and again load flow for the system is carried out. The objective function of the cost incorporating capacitor cost and loss cost is formulated constrained with voltage limits. The capacitor with the minimum cost is selected as the optimized solution. The proposed procedure is applied to different standard test systems as 12-bus radial distribution systems. In addition, the proposed procedure is applied on a real distribution system, a section of Sallaghari Feeder of Thimi substation. The voltage drops and power loss before and after installing the capacitor were compared for the system under test in this work. The result showed better voltage profiles and power losses of the distribution system can be improved by using the proposed method and it can be a benefit to the distribution networks.


Sign in / Sign up

Export Citation Format

Share Document