scholarly journals Denoising of Speech Signal using Empirical Mode Decomposition and Kalman Filter

Speech denoising is the process of removing the noise from the noise corrupted speech. The applications of speech denoising are used in speech enhancement, speech recognition and many more. In this work, a new approach is proposed to de-noise the speech which is corrupted from different noises, Empirical mode decomposition and the Kalman filter (EMD-KF) is used for speech denoising in the proposed work. The clean speech is corrupted by the noise with the different SNR’s, and further Empirical mode decomposition (EMD) is applied to the noise corrupted speech later the obtained resultant speech is passed through the Kalman filter (KF) which gives the denoised speech. The result shows that the mean squared error (MSE) values of EMD-KF are extremely less when compared to other methods like discrete wavelet transform (wavelet families like Daubechies and Symlet), empirical mode decomposition (EMD) and moving average filter followed by empirical mode decomposition (MA-EMD). As an application the proposed algorithm is used in the feature extraction for speech recognition. Mel frequency cepstral coefficient (MFCC) is performed on both the original speech and the denoised speech and found majority of the denoised speech features are similar to the original speech features and few denoised speech features are nearby to the original speech features.

Author(s):  
Shing-Tai Pan ◽  
Ching-Fa Chen ◽  
Wen-Sin Tseng

The purpose of this paper is to accelate the computing speed of Empirical Mode Decomposition (EMD) based on multi-core embedded systems for robust speech recognition. A reconfigurable chip, Field Programmable Gate Array (FPGA), is used for the implementation of the designed system. This paper applies EMD to discompose some noised speech signals into several Intrinsic Mode Functions (IMFs). These IMFs will be combined to recover the original speech by multiplying their corresponding weights which were trained by Genetic Algorithms (GA). After applying Empirical Mode Decomposition (EMD), we obtain a cleaner speech for recognition. Due to the complexity of the computation of the EMD, a dual-core architecture of embedded system on FPGA is proposed to accelerate the computing speed of EMD for robust speech recognition. This will enhance the efficiency of embedded speech recognition system.


2019 ◽  
Vol 16 (1) ◽  
pp. 10-13 ◽  
Author(s):  
Zoltán Germán-Salló

Abstract This study explores the data-driven properties of the empirical mode decomposition (EMD) for signal denoising. EMD is an acknowledged procedure which has been widely used for non-stationary and nonlinear signal processing. The main idea of the EMD method is to decompose the analyzed signal into components without using expansion functions. This is a signal dependent representation and provides intrinsic mode functions (IMFs) as components. These are analyzed, through their Hurst exponent and if they are found being noisy components they will be partially or integrally eliminated. This study presents an EMD decomposition-based filtering procedure applied to test signals, the results are evaluated through signal to noise ratio (SNR) and mean square error (MSE). The obtained results are compared with discrete wavelet transform based filtering results.


2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
Md. Rabiul Islam ◽  
Md. Rashed-Al-Mahfuz ◽  
Shamim Ahmad ◽  
Md. Khademul Islam Molla

This paper presents a subband approach to financial time series prediction. Multivariate empirical mode decomposition (MEMD) is employed here for multiband representation of multichannel financial time series together. Autoregressive moving average (ARMA) model is used in prediction of individual subband of any time series data. Then all the predicted subband signals are summed up to obtain the overall prediction. The ARMA model works better for stationary signal. With multiband representation, each subband becomes a band-limited (narrow band) signal and hence better prediction is achieved. The performance of the proposed MEMD-ARMA model is compared with classical EMD, discrete wavelet transform (DWT), and with full band ARMA model in terms of signal-to-noise ratio (SNR) and mean square error (MSE) between the original and predicted time series. The simulation results show that the MEMD-ARMA-based method performs better than the other methods.


Sign in / Sign up

Export Citation Format

Share Document