scholarly journals Supply Chain Modelling Based on Twelve Related Features: A Novel Iteration Feature Selection Method

Author(s):  
Hussein Alsteif ◽  
◽  
Murat Akkaya ◽  

Real-time prediction of hour-based order entry has been lacking in literature. Compared to previous research on supply chain problems, our proposed approach overcomes the constraints of operations management with longer time periods such as weekly and monthly by developing a novel iteration model. We performed experiments on 100 products with high cumulative volume over time. Using 3 different dataset, our proposed model proved efficient in forecasting skewed demand signals with lot of noise in supply chains.

2021 ◽  
pp. 1-15
Author(s):  
Jianrong Yao ◽  
Zhongyi Wang ◽  
Lu Wang ◽  
Zhebin Zhang ◽  
Hui Jiang ◽  
...  

With the in-depth application of artificial intelligence technology in the financial field, credit scoring models constructed by machine learning algorithms have become mainstream. However, the high-dimensional and complex attribute features of the borrower pose challenges to the predictive competence of the model. This paper proposes a hybrid model with a novel feature selection method and an enhanced voting method for credit scoring. First, a novel feature selection combined method based on a genetic algorithm (FSCM-GA) is proposed, in which different classifiers are used to select features in combination with a genetic algorithm and combine them to generate an optimal feature subset. Furthermore, an enhanced voting method (EVM) is proposed to integrate classifiers, with the aim of improving the classification results in which the prediction probability values are close to the threshold. Finally, the predictive competence of the proposed model was validated on three public datasets and five evaluation metrics (accuracy, AUC, F-score, Log loss and Brier score). The comparative experiment and significance test results confirmed the good performance and robustness of the proposed model.


2009 ◽  
Vol 29 (10) ◽  
pp. 2812-2815
Author(s):  
Yang-zhu LU ◽  
Xin-you ZHANG ◽  
Yu QI

2019 ◽  
Vol 12 (4) ◽  
pp. 329-337 ◽  
Author(s):  
Venubabu Rachapudi ◽  
Golagani Lavanya Devi

Background: An efficient feature selection method for Histopathological image classification plays an important role to eliminate irrelevant and redundant features. Therefore, this paper proposes a new levy flight salp swarm optimizer based feature selection method. Methods: The proposed levy flight salp swarm optimizer based feature selection method uses the levy flight steps for each follower salp to deviate them from local optima. The best solution returns the relevant and non-redundant features, which are fed to different classifiers for efficient and robust image classification. Results: The efficiency of the proposed levy flight salp swarm optimizer has been verified on 20 benchmark functions. The anticipated scheme beats the other considered meta-heuristic approaches. Furthermore, the anticipated feature selection method has shown better reduction in SURF features than other considered methods and performed well for histopathological image classification. Conclusion: This paper proposes an efficient levy flight salp Swarm Optimizer by modifying the step size of follower salp. The proposed modification reduces the chances of sticking into local optima. Furthermore, levy flight salp Swarm Optimizer has been utilized in the selection of optimum features from SURF features for the histopathological image classification. The simulation results validate that proposed method provides optimal values and high classification performance in comparison to other methods.


Author(s):  
Fatemeh Alighardashi ◽  
Mohammad Ali Zare Chahooki

Improving the software product quality before releasing by periodic tests is one of the most expensive activities in software projects. Due to limited resources to modules test in software projects, it is important to identify fault-prone modules and use the test sources for fault prediction in these modules. Software fault predictors based on machine learning algorithms, are effective tools for identifying fault-prone modules. Extensive studies are being done in this field to find the connection between features of software modules, and their fault-prone. Some of features in predictive algorithms are ineffective and reduce the accuracy of prediction process. So, feature selection methods to increase performance of prediction models in fault-prone modules are widely used. In this study, we proposed a feature selection method for effective selection of features, by using combination of filter feature selection methods. In the proposed filter method, the combination of several filter feature selection methods presented as fused weighed filter method. Then, the proposed method caused convergence rate of feature selection as well as the accuracy improvement. The obtained results on NASA and PROMISE with ten datasets, indicates the effectiveness of proposed method in improvement of accuracy and convergence of software fault prediction.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zhaleh Memari ◽  
Abbas Rezaei Pandari ◽  
Mohammad Ehsani ◽  
Shokufeh Mahmudi

PurposeTo understand the football industry in its entirety, a supply chain management (SCM) approach is necessary. This includes the study of suppliers, consumers and their collaborations. The purpose of this study was to present a business management model based on supply chain management.Design/methodology/approachData were collected through in-depth interviews with 12 academic and executive football experts. After three steps of open, axial and selective coding based on grounded theory with a paradigmatic approach, the data were analysed, and a football supply chain management (FSCM) was developed. The proposed model includes three managerial components: upstream suppliers, the manufacturing firm, and downstream customers.FindingsThe football industry sector has three parts: upstream suppliers, manufacturing firm/football clubs and downstream customers. We proposed seven parts for the managerial processes of football supply chain management: event/match management, club management, resource and infrastructure management, customer relationship management, supplier relationship management, cash flow management and knowledge and information flow management. This model can be used for configuration, coordination and redesign of business operations as well as the development of models for evaluation of the football supply chain's performance.Originality/valueThe proposed model of a football supply chain management, with the existing literature and theoretical review, created a synergistic outcome. This synergy is presented in the linkage of the players in this chain and interactions between them. This view can improve the management of industry productivity and improve the products quality.


2021 ◽  
Vol 25 (1) ◽  
pp. 21-34
Author(s):  
Rafael B. Pereira ◽  
Alexandre Plastino ◽  
Bianca Zadrozny ◽  
Luiz H.C. Merschmann

In many important application domains, such as text categorization, biomolecular analysis, scene or video classification and medical diagnosis, instances are naturally associated with more than one class label, giving rise to multi-label classification problems. This has led, in recent years, to a substantial amount of research in multi-label classification. More specifically, feature selection methods have been developed to allow the identification of relevant and informative features for multi-label classification. This work presents a new feature selection method based on the lazy feature selection paradigm and specific for the multi-label context. Experimental results show that the proposed technique is competitive when compared to multi-label feature selection techniques currently used in the literature, and is clearly more scalable, in a scenario where there is an increasing amount of data.


Author(s):  
B. Venkatesh ◽  
J. Anuradha

In Microarray Data, it is complicated to achieve more classification accuracy due to the presence of high dimensions, irrelevant and noisy data. And also It had more gene expression data and fewer samples. To increase the classification accuracy and the processing speed of the model, an optimal number of features need to extract, this can be achieved by applying the feature selection method. In this paper, we propose a hybrid ensemble feature selection method. The proposed method has two phases, filter and wrapper phase in filter phase ensemble technique is used for aggregating the feature ranks of the Relief, minimum redundancy Maximum Relevance (mRMR), and Feature Correlation (FC) filter feature selection methods. This paper uses the Fuzzy Gaussian membership function ordering for aggregating the ranks. In wrapper phase, Improved Binary Particle Swarm Optimization (IBPSO) is used for selecting the optimal features, and the RBF Kernel-based Support Vector Machine (SVM) classifier is used as an evaluator. The performance of the proposed model are compared with state of art feature selection methods using five benchmark datasets. For evaluation various performance metrics such as Accuracy, Recall, Precision, and F1-Score are used. Furthermore, the experimental results show that the performance of the proposed method outperforms the other feature selection methods.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1226
Author(s):  
Saeed Najafi-Zangeneh ◽  
Naser Shams-Gharneh ◽  
Ali Arjomandi-Nezhad ◽  
Sarfaraz Hashemkhani Zolfani

Companies always seek ways to make their professional employees stay with them to reduce extra recruiting and training costs. Predicting whether a particular employee may leave or not will help the company to make preventive decisions. Unlike physical systems, human resource problems cannot be described by a scientific-analytical formula. Therefore, machine learning approaches are the best tools for this aim. This paper presents a three-stage (pre-processing, processing, post-processing) framework for attrition prediction. An IBM HR dataset is chosen as the case study. Since there are several features in the dataset, the “max-out” feature selection method is proposed for dimension reduction in the pre-processing stage. This method is implemented for the IBM HR dataset. The coefficient of each feature in the logistic regression model shows the importance of the feature in attrition prediction. The results show improvement in the F1-score performance measure due to the “max-out” feature selection method. Finally, the validity of parameters is checked by training the model for multiple bootstrap datasets. Then, the average and standard deviation of parameters are analyzed to check the confidence value of the model’s parameters and their stability. The small standard deviation of parameters indicates that the model is stable and is more likely to generalize well.


Sign in / Sign up

Export Citation Format

Share Document