scholarly journals Encryption and Decryption Using Hybrid Cryptography Techniques and Multi-level Steganography

Data Encryption, in the present time, is used to deter malicious parties from accessing sensitive data, allowing the access to only authorized parties as it uses the key to safeguard the sensitive information to be transferred. Various cryptography techniques are used to maintain confidentiality and integrity of the data, and this paper proposes the hybrid scheme of using four layers of encryption including steganography to safeguard the authenticity of the information to be transferred. In this paper, three conventional key cryptography algorithms, which are Fibonacci series, XOR cipher and PN sequence encryption, are used along with RSA cryptography which is a public key cryptography algorithm. In addition to it, steganography technique is also used in the last two layers of our proposed model. Firstly, the whole of the encrypted string, obtained after the above cryptography algorithms, is hidden inside the first image. Now this encrypted host image is further hidden inside another image by using one bit LSB algorithm. This model offers the double security of the data as here the data is not only encrypted but also hidden in an image which again is hidden inside another image making it very hard even to detect the data.

Author(s):  
Reni Rahmadani ◽  
Harvei Desmon Hutahaean ◽  
Ressy Dwitias Sari

A lot of data is misused without the data owner being aware of it. Software developers must ensure the security user data on their system. Due to the size of the market that houses data, the security of record databases must be of great concern. Cryptographic systems or data encryption can be used for data security. The Merkle-Hellman Knapsack algorithm is included in public-key cryptography because it uses different keys for the encryption and decryption processes. This algorithm belongs to the NP-complete algorithm which cannot be solved in polynomial order time. This algorithm has stages of key generation, encryption, and decryption. The results of this study secure database records from theft by storing records in the form of ciphertext/password. Ciphertext generated by algorithmic encryption has a larger size than plaintext.


Big data security is the most focused research issue nowadays due to their increased size and the complexity involved in handling of large volume of data. It is more difficult to ensure security on big data handling due to its characteristics 4V’s. With the aim of ensuring security and flexible encryption computation on big data with reduced computation overhead in this work, framework with encryption (MRS) is presented with Hadoop Distributed file System (HDFS). Development of the MapReduce paradigm needs networked attached storage in addition to parallel processing. For storing as well as handling big data, HDFS are extensively utilized. This proposed method creates a framework for obtaining data from client and after that examining the received data, excerpt privacy policy and after that find the sensitive data. The security is guaranteed in this framework using key rotation algorithm which is an efficient encryption and decryption technique for safeguarding the data over big data. Data encryption is a means to protect data in storage with containing a key encryption saved and accessible to reuse the data while required. The outcome shows that the research method guarantees greater security for enormous amount of data and gives beneficial info to related clients. Therefore the outcome concluded that the proposed method is superior to the previous method. Finally, this research can be applied effectively on the various domains such as health care domains, educational domains, social networking domains, etc which require more security and increased volume of data.


2021 ◽  
Author(s):  
Vinay Michael

Abstract Internet of Things (IoT) based applications and systems are gaining attention in the recent days because of their vast benefits such as efficient utilization of resources, enhanced data collection, improved security, lesser human efforts and reduced time. Security of sensitive data in IoT based fog environments is inevitable to prevent those data to be misused by the attackers. In this study, we present an improved hybrid algorithm termed as HQCP-ABE (Hybrid Quantum key Cipher text Policy Attribute based Encryption with Cipher text update) that integrates highly effective algorithms such as CP-ABE, Quantum key cryptography and cipher text update. The proposed algorithm eliminates the need of costly pairing during decryptions and efficiently performs data encryption, decryption and user authorization. The proposed protocol is demonstrated to be highly efficient in terms of encryption and decryption while compared to other existing methods. It also achieves lesser packet loss, reduced control overheads, reduced computational overhead during encryption and decryption processes, lesser delay, improved security, packet delivery ratio, throughput, network lifetime with limited bandwidth and user privacy. We further considered energy consumption in this study. The proposed HQCP-ABE method is demonstrated using ns3 simulation and compared with existing CP-ABE and PA-CPABE methods.


Author(s):  
Eko Hariyanto Hariyanto ◽  
Muhammad Zarlis ◽  
Darmeli Nasution Nasution ◽  
Sri Wahyuni

 Security of RSA cryptography lied in the difficulty of factoring the number p and q bacame the prime factor. The greater the value of p and q used, the better the security level was. However, this could result in a very slow decryption process. The most commonly used and discussed method of speeding up the encryption and decryption process in RSA was the Chinese Remainder Theorem (CRT). Beside that method, there was another method with the same concept with CRT namely Aryabhata Remainder Theorem which was also relevant used in public key cryptography such as RSA. The purpose of this study was to obtain an effective method to RSA especially in the decryption process based on the calculation of the time complexity of computing.


In the current world, the sensitive data are being transferred from source to destination in a much secured way in a common internet is inexorable. There are various technological aspects involved among the data world to protect the sensitive information or data hiding. Watermarking and Steganography are such important techniques which plays a prominent role in such data hiding. Earlier various techniques are been widely used like finger printing, Cryptography for encryption and decryption etc. But in the recent days the Digital Watermarking and Steganography are two range of techniques in such information hiding in a covered or secret way embedding to any host data which can be extracted with proper algorithms after the receiver receives the information. The combination of all these techniques can also bring a change in the internet industry. The information can be concealed and send across in a platform to the receiver with all these hidden techniques whereas the receiver of the data also need to know on the extraction techniques so that the information is been securely sent and received in a two-way communication. This paper deals about the comparing the common factors or attributes among the Watermarking and Steganography techniques.


As the voluminous amount of data is generated because of inexorably widespread proliferation of electronic data maintained using the Electronic Health Records (EHRs). Medical health facilities have great potential to discern the patterns from this data and utilize them in diagnosing a specific disease or predicting outbreak of an epidemic etc. This discern of patterns might reveal sensitive information about individuals and this information is vulnerable to misuse. This is, however, a challenging task to share such sensitive data as it compromises the privacy of patients. In this paper, a random forest-based distributed data mining approach is proposed. Performance of the proposed model is evaluated using accuracy, f-measure and appa statistics analysis. Experimental results reveal that the proposed model is efficient and scalable enough in both performance and accuracy within the imbalanced data and also in maintaining the privacy by sharing only useful healthcare knowledge in the form of local models without revealing and sharing of sensitive data.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1912
Author(s):  
Md. Mokhlesur Rahman ◽  
Ravie Chandren Muniyandi ◽  
Shahnorbanun Sahran ◽  
Suziyani Mohamed

Interrupting, altering, or stealing autism-related sensitive data by cyber attackers is a lucrative business which is increasing in prevalence on a daily basis. Enhancing the security and privacy of autism data while adhering to the symmetric encryption concept is a critical challenge in the field of information security. To identify autism perfectly and for its data protection, the security and privacy of these data are pivotal concerns when transmitting information over the Internet. Consequently, researchers utilize software or hardware disk encryption, data backup, Data Encryption Standard (DES), TripleDES, Advanced Encryption Standard (AES), Rivest Cipher 4 (RC4), and others. Moreover, several studies employ k-anonymity and query to address security concerns, but these necessitate a significant amount of time and computational resources. Here, we proposed the sanitization approach for autism data security and privacy. During this sanitization process, sensitive data are concealed, which avoids the leakage of sensitive information. An optimal key was generated based on our improved meta-heuristic algorithmic framework called Enhanced Combined PSO-GWO (Particle Swarm Optimization-Grey Wolf Optimization) framework. Finally, we compared our simulation results with traditional algorithms, and it achieved increased output effectively. Therefore, this finding shows that data security and privacy in autism can be improved by enhancing an optimal key used in the data sanitization process to prevent unauthorized access to and misuse of data.


2017 ◽  
Vol 10 (1) ◽  
pp. 24-32
Author(s):  
Mamta Padole ◽  
Pratik Kanani

Encryption, itself doesn’t prevent interception, but denies the message content to the interceptor. For technical reasons, an encryption scheme usually uses a pseudo-random encryption key generated by an algorithm. It is impossible to decrypt the message without possessing the key, but, for a well-designed encryption scheme, large computational resources and skills are required to decrypt it. An authorized recipient can easily decrypt the message with the key provided by the originator to recipients, but not to unauthorized interceptors. Data hiding is the skill of hiding messages in such a ways the only the sender and the receiver of the message knows that the message has been hidden. In the context of secured information transmission and reception, efficient techniques for data encryption and decryption are very much essential. In this paper, a message transfer application is developed which mainly focusses on secret message transfer between two parties. Used scheme not only focusses on text but also the encryption of images and videos. A unique algorithm i-Se4GE is used for the transfer of keys required for the encryption and decryption of messages. This algorithm makes use of a set of random numbers, timestamp of the two users, a set of public keys and dynamic keys. The algorithm uses a two-step authentication request-reply process which provides it a double layer security.


Author(s):  
Musavir Hassan ◽  
Muheet Ahmed Butt ◽  
Majid Zaman

As the voluminous amount of data is generated because of inexorably widespread proliferation of electronic data maintained using the Electronic Health Records (EHRs). Medical health facilities have great potential to discern the patterns from this data and utilize them in diagnosing a specific disease or predicting outbreak of an epidemic etc. This discern of patterns might reveal sensitive information about individuals and this information is vulnerable to misuse. This is, however, a challenging task to share such sensitive data as it compromises the privacy of patients. In this paper, a random forest-based distributed data mining approach is proposed. Performance of the proposed model is evaluated using accuracy, f-measure and appa statistics analysis. Experimental results reveal that the proposed model is efficient and scalable enough in both performance and accuracy within the imbalanced data and also in maintaining the privacy by sharing only useful healthcare knowledge in the form of local models without revealing and sharing of sensitive data.


2013 ◽  
Vol 9 (1) ◽  
Author(s):  
Willy Ristanto ◽  
Willy Sudiarto Raharjo ◽  
Antonius Rachmat Chrismanto

Cryptography is a technique for sending secret messages. This research builds an Android-based email client application which implement cryptography with Schmidt-Samoa algorithm, which is classified as a public key cryptography. The algorithm performs encryption and decryption based on exponential and modulus operation on text messages. The application use 512 and 1024 bit keys. Performance measurements is done using text messages with character number variation of 5 – 10.000 characters to obtain the time used for encryption and decryption process. As a result of this research, 99,074% data show that decryption process is faster than encryption process. In 512 bit keys, the system can perform encryption process in 520 - 18.256 miliseconds, and decryption process in 487 - 5.688 miliseconds. In 1024 bit keys, system can perform encryption process in 5626 – 52,142 miliseconds (7.388 times slower than 512 bit keys) and decryption process with time 5463 – 15,808 miliseconds or 8.290 times slower than 512 bit keys.


Sign in / Sign up

Export Citation Format

Share Document