scholarly journals Optimization of Nigerian Power System Distribution using Distributed Generation

The main aim of this paper is to enhance the performance of power system distribution in Enugu State Nigeria using distributed Generation System. The main function of power system distribution is to transfer electrical energy to the consumers, while maintaining an acceptable reliability and voltage quality to all customers. It is sad to know that such services is lacking from the Electrical distribution company at Enugu State Nigeria. This paper proposed to setup a centralized plants distributing electricity within the state through Distributed Generation (DG). The implemented DG was abletoreducethe Power Loss from the transmissiona n d distribution stations within the state and also improve voltage profile. The author was able to optimize the power generationfrom wind Energy source to the Distribution network and the DG system was able tostabilize the network by normalizing the fluctuating voltage profile at the distribution end of power system. In order to achieve that, the power system network wasmodeled and simulated using MATLAB/SIMULINK software. The results of the simulation with DG system and without DG system were compared. The result from power Network without DG shows instability of perunit voltage between 0 to 5 seconds and while that from DG system shows stabilization per-unit voltage between 5 to 10 seconds. The total power system Loss without DG system was 2350KW while the power loss with DG system was 1883KW. Hence, the percentage of power system improvement was 11.03%. Therefore from the results, there is reduction of power Loss when DG is applied in the power system.

2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Muhammad Aamir Aman ◽  
Xin Cheng Ren ◽  
Wajahat Ullah Khan Tareen ◽  
Muhammad Abbas Khan ◽  
Muhammad Rizwan Anjum ◽  
...  

Many underdeveloped countries are facing acute shortage of electric power and short term measures are important to consider to address the problems of power outage, power plant failures, and disaster areas. Distributed generation (DG) is a promising approach for such cases as it allows quick on-site installation and generation of electric power. Injection of DG can improve the system voltage profile and also reduce the system's total power losses. However, the placement and sizing of the DG unit is an optimization problem in the radial distribution system. As a test case, this study examines voltage profile improvement and system power losses for an 11 KV residential feeder at the Abdul Rehman Baba grid station in Pakistan, which is modelled using the Electrical Transient Analyzer Program (ETAP). For various scenarios, several tests are conducted to assess the effects of DG on the distribution system. The results show that proper design considerations of size and location of a DG, to be inserted in to the system, lead to significant reduction in power losses and improvement in voltage profile and thus improvement in the overall efficiency of the power system. The projections of this work can be used to optimize the expansion of a power system and tackling different issues related to voltage profile in distribution sector worldwide.


Machines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 20
Author(s):  
Waseem Haider ◽  
S Jarjees Ul Hassan ◽  
Arif Mehdi ◽  
Arif Hussain ◽  
Gerardo Ondo Micha Adjayeng ◽  
...  

Power loss and voltage instability are major problems in distribution systems. However, these problems are typically mitigated by efficient network reconfiguration, including the integration of distributed generation (DG) units in the distribution network. In this regard, the optimal placement and sizing of DGs are crucial. Otherwise, the network performance will be degraded. This study is conducted to optimally locate and sizing of DGs into a radial distribution network before and after reconfiguration. A multi-objective particle swarm optimization algorithm is utilized to determine the optimal placement and sizing of the DGs before and after reconfiguration of the radial network. An optimal network configuration with DG coordination in an active distribution network overcomes power losses, uplifts voltage profiles, and improves the system stability, reliability, and efficiency. For considering the actual power system scenarios, a penalty factor is also considered, this penalty factor plays a crucial role in the minimization of total power loss and voltage profile enhancement. The simulation results showed a significant improvement in the percentage power loss reduction (32% and 68.05% before and after reconfiguration, respectively) with the inclusion of DG units in the test system. Similarly, the minimum bus voltage of the system is improved by 4.9% and 6.53% before and after reconfiguration, respectively. The comparative study is performed, and the results showed the effectiveness of the proposed method in reducing the voltage deviation and power loss of the distribution system. The proposed algorithm is evaluated on the IEEE-33 bus radial distribution system, using MATLAB software.


2019 ◽  
Vol 6 (2) ◽  
pp. 7
Author(s):  
I. K. A. Wijaya ◽  
R. S. Hartati ◽  
I W. Sukerayasa

Saba feeder is a feeder who supplies 78 distribution transformers with feeder length 38,959 kms, through this Saba feeder electrical energy is channeled radially to each distribution substation. In 2017 the voltage shrinkage at Saba feeder was 9.88% (18,024 kV) while the total power loss was 445.5 kW. In this study an attempt was made to overcome the voltage losses and power losses using the method of optimizing bank capacitors with genetic algorithms and network reconfiguration. The best solution obtained from this study will be selected for repair of voltage losses and power losses in Saba feeders. The results showed that by optimizing bank capacitors using genetic algorithms, the placement of capacitor banks was placed on bus 23 (the channel leading to the BB0024 transformer) and successfully reduced the power loss to 331.7 kW. The network reconfiguration succeeded in fixing the voltage on the Saba feeder with a voltage drop of 4.75% and a total power loss of 182.7 kW. With the combined method, reconfiguration and optimization of bank capacitors with genetic algorithms were obtained on bus 27 (channel to transformer BB0047) and managed to reduce power losses to 143 kW.


Author(s):  
Shreya Mahajan ◽  
Shelly Vadhera

Purpose The purpose of this study/paper is to integrate distributed generation optimally in power system using plant propagation algorithm. Distributed generation is a growing concept in the field of electricity generation. It mainly comprises small generation units installed at calculated points of a power system network. The challenge of optimal allocation and sizing of DG is of utmost importance. Design/methodology/approach Plant propagation algorithm and particle swarm optimisation techniques have been implemented where a weighting factor-based multi-objective function is minimised. The objective is to cut down real losses and to improve the voltage profile of the system. Findings The results obtained using plant propagation algorithm technique for IEEE 33-bus systems are compared to those attained using particle swarm optimisation technique. The paper deals with the optimisation of weighting factor-based objective function, which counterpoises the losses and improves the voltage profile of the system and, therefore, helps to deliver the best outcomes. Originality/value This paper fulfils an identified need to study the multi-objective optimisation techniques for integration of distributed generation in the concerned power system network. The paper proposes a novel plant-propagation-algorithm-based technique in appropriate allocation and sizing of distributed generation unit.


Author(s):  
Mohd Nabil Bin Muhtazaruddin ◽  
Nurul Aini Bani ◽  
Siti Armiza Mohd Aris ◽  
Hazilah Mad Kaidi ◽  
Abdul Yasser Abd Fatah ◽  
...  

This paper presents a solution to solve the network reconfiguration, DG coordination (location and size) and capacitor coordination (location and size), simultaneously. The proposed solution will be determined by using Artificial Bee Colony (ABC). Various case studies are presented to see the impact on the test system, in term of power loss reduction and also voltage profiles. The proposed approach is applied to a 33-bus test system and simulate by using MATLAB programming. The simulation results show that combination of DG, capacitor and network reconfiguration gives a positive impact on total power losses minimization as well as voltage profile improvement compared to other case studies.


Distributed generation (DG) units can provide many benefits when they are incorporated along the distribution network/system. These benefits are more if DG units are connected at suitable nodes with appropriate rating otherwise, they may cause to increased power loss and poor voltage profile. In this work, optimal allocation (both location and size) problem is solved by considering power loss minimization as an objective function. An analytical method “index vector method (IVM)” is applied to find DG location. A new optimization algorithm “Whale Optimization Algorithm (WOA)” is employed to determine the DG rating. Two popularly known test systems “IEEE 33 & IEEE 69”bus systems are used to evaluate the efficacy of IVM and WOA.


Author(s):  
Abdulhamid Musa ◽  
Tengku Juhana Tengku Hashim

This paper presents a Genetic Algorithm (GA) for optimal location and sizing of multiple distributed generation (DG) for loss minimization. The study is implemented on a 33-bus radial distribution system to optimally allocate different numbers of DGs through the minimization of total active power losses and voltage deviation at power constraints of 0 – 2 MW and 0 – 3 MW respectively. The study proposed a PQ model of DG and Direct Load Flow (DLF) technique that uses Bus Incidence to Branch current (BIBC) and Branch Current to Bus Voltage (BCBV) matrices. The result obtained a minimum base case voltage level of 0.9898 p.u at bus 18 with variations of voltage improvements at other buses after single and multiple DG allocations in the system. Besides, the total power loss before DG allocation is observed as 0.2243 MW, and total power loss after DG allocation was determined based on the power constraints. Various optimal locations were seen depending on the power limits of different DG sizes. The results have shown that the impact of optimal allocation and sizing of three DG is more advantageous concerning voltage improvement, reduction of the voltage deviation and also total power loss in the distribution system. The results obtained in the 0 – 2 MW power limit is consistent to the 0 – 3 MW power limits regarding the influence of allocating DG to the network and minimization of total power losses.


Author(s):  
Su Hlaing Win ◽  
Pyone Lai Swe

A Radial Distribution network is important in power system area because of its simple design and reduced cost. Reduction of system losses and improvement of voltage profile is one of the key aspects in power system operation. Distributed generators are beneficial in reducing losses effectively in distribution systems as compared to other methods of loss reduction. Sizing and location of DG sources places an important role in reducing losses in distribution network. Four types of DG are considered in this paper with one DG installed for minimize the total real and reactive power losses. The objective of this methodology is to calculate size and to identify the corresponding optimum location for DG placement for minimizing the total real and reactive power losses and to improve voltage profile   in primary distribution system. It can obtain maximum loss reduction for each of four types of optimally placed DGs. Optimal sizing of Distributed Generation can be calculated using exact loss formula and an efficient approach is used to determine the optimum location for Distributed Generation Placement.  To demonstrate the performance of the proposed approach 36-bus radial distribution system in Belin Substation in Myanmar was tested and validated with different sizes and the result was discussed.


Author(s):  
Ahmed Mohamed Abdelbaset ◽  
AboulFotouh A. Mohamed ◽  
Essam Abou El-Zahab ◽  
M. A. Moustafa Hassan

<p><span>With the widespread of using distributed generation, the connection of DGs in the distribution system causes miscoordination between protective devices. This paper introduces the problems associated with recloser fuse miscoordination (RFM) in the presence of single and multiple DG in a radial distribution system. Two Multi objective optimization problems are presented. The first is based on technical impacts to determine the optimal size and location of DG considering system power loss reduction and enhancement the voltage profile with a certain constraints and the second is used for minimizing the operating time of all fuses and recloser with obtaining the optimum settings of fuse recloser coordination characteristics. Whale Optimizer algorithm (WOA) emulated RFM as an optimization problem. The performance of the proposed methodology is applied to the standard IEEE 33 node test system. The results show the robustness of the proposed algorithm for solving the RFM problem with achieving system power loss reduction and voltage profile enhancement.</span></p>


Sign in / Sign up

Export Citation Format

Share Document