scholarly journals Development and Validation of a Stability indicating Related Substances of Baricitinib by RP-HPLC and its Degradation

Reverse phase high performance liquid chromatography method, for estimation of related substances or chromatographic impurities of Barcitinib was developed and validated. Baricitinib was developed by separating its degradation products on a X-Terra RP18 (150x4.6mm, 5.0 µm) column using 0.1% Tri ethyl amine in water adjusted pH-2.5 with OPA and Acetonitrile in simple gradient at a flow rate 1.0 ml/min. The column effluents were monitored by a photodiode array detector set at 224nm. The method was validated in terms of specificity, linearity, accuracy, precision, detection limit, quantification limit and robustness. Forced degradation of Baricitinib was carried out under acidic, basic, peroxide, reduction, thermal, photo and hydrolysis conditions. The proposed method is validated as per ICH Q2 (R1) guidelines. The proposed method is simple as selected chromatographic conditions are not so difficult to apply in routine analysis for testing the chromatographic impurity of baricitinib.

2011 ◽  
Vol 94 (4) ◽  
pp. 1076-1081 ◽  
Author(s):  
Fernando Rodríguez-Ramos ◽  
Víctor H Sánchez-Estrada ◽  
Alejandro Alfaro-Romero ◽  
Gabriela Rubí Tapia-Álvarez ◽  
Andrés Navarrete

Abstract An HPLC method was developed for the simultaneous determination of gnaphaliin A and B, active compounds of Gnaphalium liebmannii Sch. Bp ex Klatt. The HPLC separation was performed on an Inertsil ODS-3 (150 × 4.6 mm id, 5 μm) RP C18 column operated at 40°C; the isocratic mobile phase was 0.02% aqueous orthophosphoric acid– methanol–acetonitrile (50 + 30 + 20, v/v/v), with a run time of 20 min and flow rate of 1.5 mL/min. Detection with a photodiode array detector (PDAD) was at 270 nm. The method was validated for linearity, repeatability, LOD, and LOQ. The LOD and LOQ for gnaphaliin A and B were found to be in the range of 0.4–0.5 and 1.0–1.4 μg/mL, respectively. This is the frst report of an analytical method developed for the quantitative analysis of flavones from Gnaphalium species by HPLC-PDAD with applications for raw material and commercial products.


Author(s):  
SNEHAL V WARGHADE ◽  
KAILAS G BOTHARA

Objective: The objective of this study was to report the stability of antiviral drug, daclatasvir (DCV) based on the information obtained from forced degradation studies and characterization of degradation products (DPs) by tandem mass spectrometry (MS/MS) analysis. Methods: Chromatographic separation was achieved on Shimadzu liquid chromatography (LC) 20 AD high-performance LC system with photodiode array detector having Kromasil C18 (250 mm×4.6 mm×5 μm) with isocratic elution of a mobile phase composed of ammonium acetate buffer (pH 4.5) and acetonitrile in a ratio of 50:50 at 315 nm. The drug was subjected to forced hydrolytic, oxidative, photolytic, and thermal stress in accordance with the ICH guideline Q1A (R2). The drug showed degradation under acidic and basic hydrolytic conditions by forming two DPs. The DPs were characterized using LC– MS/MS studies and the pathways of fragmentation are proposed. Validation of the developed method was carried out in accordance with ICH guidelines. Results: Two DPs were identified, DP-1 as (S)-1-((S)-2-(5-(4’-(2-((S)-1-((S)-2-((methoxycarbonyl)amino)-3-methylbutanoyl)pyrrolidin-2-yl)-1H-imidazol-5-yl)-[1,1’-biphenyl]-4-yl)-1H-imidazol-2-yl)pyrrolidin-1-yl)-3-methyl-1-oxobutan-2-aminium and DP-2 as (S)-2-(5-(4’-(2-((S)-1-((S)-2- ((methoxycarbonyl)amino)-3-methylbutanoyl)pyrrolidin-2-yl)-1H-imidazol-5-yl)-[1,1’-biphenyl]-4-yl)-1H-imidazol-2-yl)pyrrolidin-1-ium. Conclusion: The method proved to be simple, accurate, precise, specific, robust, and less time consuming and can be applied for the determination of DCV in bulk and marketed formulation.


2016 ◽  
Vol 8 (30) ◽  
pp. 5949-5956 ◽  
Author(s):  
Soumia Boulahlib ◽  
Ali Boudina ◽  
Kahina Si-Ahmed ◽  
Yassine Bessekhouad ◽  
Mohamed Trari

In this study, a rapid and simple method based on reversed-phase high performance liquid chromatography (RP-HPLC) using a photodiode array detector (PDA) for the simultaneous analysis of five pollutants including aniline and its degradation products, para-aminophenol, meta-aminophenol, ortho-aminophenol and phenol, was developed.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Anuradha Vejendla ◽  
Subrahmanyam Talari ◽  
Raju Moturu ◽  
S. N. Murthy Boddapati ◽  
A. Emmanuel Kola

Abstract Background Using a Symmetry C18 (4.6 × 150 mm, 3.5) column, a high-performance liquid chromatographic method for quantification of Rilpivirine and Cabotegravir in active pharmaceutical ingredients was developed and validated. The mobile phase is made up of buffer, acetonitrile, and 0.1 percent formic acid in a 20:80v/v ratio. The flow rate was kept constant at 1.0 ml/min, and detection was accomplished through absorption at 231 nm with a photodiode array detector. Results The calibration curve was linear, with a regression coefficient (R2) value of 0.999 and concentrations ranging from 30 to 450 g/ml of Rilpivirine and 20–300 g/ml of Cabotegravir. The method's LOD and LOQ were 0.375 g/ml, 1.238 g/ml, and 0.25 g/ml, 0.825 g/ml for Rilpivirine and Cabotegravir, respectively. Conclusions In the forced degradation studies, the degradants were characterized by using LCMS and FTIR. The current application was found to be simple, economical, and suitable, and validated according to ICH guidelines.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Anand A. Mahajan ◽  
Amey M. Marathe ◽  
Suvarna S. Jarande ◽  
Raghuvir Pissurlenkar ◽  
Vandana T. Gawande

Abstract Background The aim of the present work was to determine potential toxicity of degradation products of febantel generated under different stress conditions mentioned in guideline Q1A (R2) laid down by International Council for Harmonization (ICH). The stability behavior of febantel was studied by subjecting it to hydrolytic, oxidative, photolytic and thermal forced degradation conditions. Results Five degradation products (DPs) were observed which were resolved using high-performance liquid chromatography (HPLC) and characterized by LC-MS/MS using positive mode of electrospray ionization. The chromatographic separation was carried out on Hypersil® BDS C18 (150 × 4.6 mm, 5 μm) column. Optimum resolution was obtained using ammonium formate buffer (10 mM, pH 3.5) and acetonitrile programmed in gradient elution mode at 281.0 nm using photodiode array detector. Conclusion The drug was found susceptible to degradation under all the stress conditions except thermal and oxidative stress. Five major unknown degradation products DP–I, DP–II, DP–III, DP–IV, and DP–V generated under photolytic, alkali, and acidic stress condition were identified and characterized by LC-MS/MS. The drug and identified degradation products were screened for prediction of in-silico toxicity using software viz. Swiss ADME, OSIRIS Property Explorer and Pro Tox II which indicated overall no toxicological concerns. Graphical abstract


Author(s):  
GOMATHY SUBRAMANIAN ◽  
S.N.MEYYANATHAN ◽  
GOWRAMMA BYRAN

Objective: A stability-indicating reverse-phase high-performance liquid chromatographic method was developed and validated for the analysis of apigenin and luteolin. The degradation behavior of apigenin and luteolin was investigated under different stress conditions as recommended by the International Conference on Harmonization (ICH). Methods: In the present study, a reversed-phase high-performance liquid chromatography method was developed and the resolution of the plant constituents was successfully achieved using Hibar Lichrospher C8 column with ultraviolet detector at a wavelength of 269 nm. The mobile phase consisted of methanol and 0.5% trifluoroacetic acid (80:20 v/v) at a flow rate of 1.0 ml/min. Both apigenin and luteolin were subjected to various stress degradation studies such as oxidation, acid and alkaline hydrolysis, and photolytic degradation. Results: The proposed method was found to be linear (1–5 μg/ml) with the linear correlation coefficient of R2=0.99. Although the degradation products of stressed conditions were not identified, the methods were able to detect the changes due to stress condition. Conclusion: The method provides good sensitivity and excellent precision and reproducibility. Forced degradation studies on apigenin and luteolin give information about their storage and intrinsic stability conditions considering the advanced pharmaceutical aspects of formulations.


Sign in / Sign up

Export Citation Format

Share Document