Characterization of process-related impurities including forced degradation products of alogliptin benzoate and the development of the corresponding reversed-phase high-performance liquid chromatography method

2014 ◽  
Vol 37 (11) ◽  
pp. 1248-1255 ◽  
Author(s):  
YuXia Zhou ◽  
WenTao Zhou ◽  
LiLi Sun ◽  
QiaoGen Zou ◽  
Ping Wei ◽  
...  
Author(s):  
GOMATHY SUBRAMANIAN ◽  
S.N.MEYYANATHAN ◽  
GOWRAMMA BYRAN

Objective: A stability-indicating reverse-phase high-performance liquid chromatographic method was developed and validated for the analysis of apigenin and luteolin. The degradation behavior of apigenin and luteolin was investigated under different stress conditions as recommended by the International Conference on Harmonization (ICH). Methods: In the present study, a reversed-phase high-performance liquid chromatography method was developed and the resolution of the plant constituents was successfully achieved using Hibar Lichrospher C8 column with ultraviolet detector at a wavelength of 269 nm. The mobile phase consisted of methanol and 0.5% trifluoroacetic acid (80:20 v/v) at a flow rate of 1.0 ml/min. Both apigenin and luteolin were subjected to various stress degradation studies such as oxidation, acid and alkaline hydrolysis, and photolytic degradation. Results: The proposed method was found to be linear (1–5 μg/ml) with the linear correlation coefficient of R2=0.99. Although the degradation products of stressed conditions were not identified, the methods were able to detect the changes due to stress condition. Conclusion: The method provides good sensitivity and excellent precision and reproducibility. Forced degradation studies on apigenin and luteolin give information about their storage and intrinsic stability conditions considering the advanced pharmaceutical aspects of formulations.


Author(s):  
SNEHAL V WARGHADE ◽  
KAILAS G BOTHARA

Objective: The objective of this study was to report the stability of antiviral drug, daclatasvir (DCV) based on the information obtained from forced degradation studies and characterization of degradation products (DPs) by tandem mass spectrometry (MS/MS) analysis. Methods: Chromatographic separation was achieved on Shimadzu liquid chromatography (LC) 20 AD high-performance LC system with photodiode array detector having Kromasil C18 (250 mm×4.6 mm×5 μm) with isocratic elution of a mobile phase composed of ammonium acetate buffer (pH 4.5) and acetonitrile in a ratio of 50:50 at 315 nm. The drug was subjected to forced hydrolytic, oxidative, photolytic, and thermal stress in accordance with the ICH guideline Q1A (R2). The drug showed degradation under acidic and basic hydrolytic conditions by forming two DPs. The DPs were characterized using LC– MS/MS studies and the pathways of fragmentation are proposed. Validation of the developed method was carried out in accordance with ICH guidelines. Results: Two DPs were identified, DP-1 as (S)-1-((S)-2-(5-(4’-(2-((S)-1-((S)-2-((methoxycarbonyl)amino)-3-methylbutanoyl)pyrrolidin-2-yl)-1H-imidazol-5-yl)-[1,1’-biphenyl]-4-yl)-1H-imidazol-2-yl)pyrrolidin-1-yl)-3-methyl-1-oxobutan-2-aminium and DP-2 as (S)-2-(5-(4’-(2-((S)-1-((S)-2- ((methoxycarbonyl)amino)-3-methylbutanoyl)pyrrolidin-2-yl)-1H-imidazol-5-yl)-[1,1’-biphenyl]-4-yl)-1H-imidazol-2-yl)pyrrolidin-1-ium. Conclusion: The method proved to be simple, accurate, precise, specific, robust, and less time consuming and can be applied for the determination of DCV in bulk and marketed formulation.


2014 ◽  
Vol 6 (16) ◽  
pp. 6560-6564 ◽  
Author(s):  
Wuxiang Zhang ◽  
Yicong Su ◽  
Jiangu Shi ◽  
Maosheng Zhang ◽  
Bide Wu ◽  
...  

In this paper, a high performance liquid chromatography technique is established for quantification of paraquat in blood.


2008 ◽  
Vol 30 (3) ◽  
pp. 341-346 ◽  
Author(s):  
Maria Bernadete Sousa Maia ◽  
Ismael Leite Martins ◽  
Demétrius Fernandes do Nascimento ◽  
Adriano Nunes Cunha ◽  
Francisco Evanir Gonçalves de Lima ◽  
...  

INDIAN DRUGS ◽  
2013 ◽  
Vol 50 (07) ◽  
pp. 14-21
Author(s):  
S. Sahu ◽  
◽  
R.M Singh ◽  
S.C. Mathur ◽  
D. K Sharma ◽  
...  

A simple, fast, precise and accurate ultra high performance liquid chromatography method was developed for degradation study of eletriptan hydrobromide (EH) under exaggerated conditions. An Inertsil ODS C18 (250 x 4.6 mm, 5µm) column in isocratic mode was used with mobile phase comprising of water, methanol and trifluoroacetic acid mixed in the ratio 55:45:0.1 % V/V/V, maintained at pH 3.5. The flow rate was set at 0.4 mL per minute with UV detection at 225 nm. The retention time of EH was found to be 3.7 minutes. Linearity for EH was found in the range of 3.5- 200 µg per mL and percentage recoveries were obtained in the range of 100.2 % to 100.6 %. The method was capable of resolving all degradants and principle component in sample. The proposed method is accurate, precise, selective, reproducible, and rapid for detection of degradation of eletriptan hydrobromide.


Author(s):  
Mannem Durga Babu ◽  
Kesana Surendrababu

Objective: The objective of the study was to develop and validate a novel, specific, precise, and simple reversed-phase high-performance liquid chromatography method for the estimation of guaifenesin present in methocarbamol API and its pharmaceutical dosage forms. Methods: The baseline separation for methocarbamol and guaifenesin was achieved by utilizing a Inertsil ODS C18 (250 mm × 4.6 mm) 5 μm column particle size and an isocratic elution method. The mobile phase contains a mixture of water and acetonitrile in the ratio of 70:30 v/v, respectively. The flow rate of the mobile phase was 1.0 mL/min with a column temperature of 25°C and detection wavelength at 272 nm. The method was validated for a limit of detection (LOD), limit of quantification (LOQ), linearity, accuracy, and reproducibility with the help of the exhibit and simulated samples. Results: The LOD for guaifenesin was 0.62 μg/mL. The LOQ for guaifenesin was 1.87 μg/mL. The correlation coefficient obtained for impurity was >0.99. The recovery was obtained for impurity was 106.56% at 50%, 95.20% at 100%, and 100.45% at 150%. In tablet analysis, we can found 0.26% (<0.5%). Conclusion: The developed method was validated as per the ICH guidelines with respect to specificity, precision, linearity, accuracy, LOD and quantification, ruggedness, robustness, and solution stability.


Sign in / Sign up

Export Citation Format

Share Document