scholarly journals An Efficient Classifier for U2R, R2L, DoS Attack

The internet has become an irreplaceable communicating and informative tool in the current world. With the ever-growing importance and massive use of the internet today, there has been interesting from researchers to find the perfect Cyber Attack Detection Systems (CADSs) or rather referred to as Intrusion Detection Systems (IDSs) to protect against the vulnerabilities of network security. CADS presently exist in various variants but can be largely categorized into two broad classifications; signature-based detection and anomaly detection CADSs, based on their approaches to recognize attack packets.The signature-based CADS use the well-known signatures or fingerprints of the attack packets to signal the entry across the gateways of secured networks. Signature-based CADS can only recognize threats that use the known signature, new attacks with unknown signatures can, therefore, strike without notice. Alternatively, anomaly-based CADS are enabled to detect any abnormal traffic within the network and report. There are so many ways of identifying anomalies and different machine learning algorithms are introduced to counter such threats. Most systems, however, fall short of complete attack prevention in the real world due system administration and configuration, system complexity and abuse of authorized access. Several scholars and researchers have achieved a significant milestone in the development of CADS owing to the importance of computer and network security. This paper reviews the current trends of CADS analyzing the efficiency or level of detection accuracy of the machine learning algorithms for cyber-attack detection with an aim to point out to the best. CADS is a developing research area that continues to attract several researchers due to its critical objective.

2019 ◽  
Author(s):  
Farhaan Noor Hamdani ◽  
Farheen Siddiqui

With the advent of the internet, there is a major concern regarding the growing number of attacks, where the attacker can target any computing or network resource remotely Also, the exponential shift towards the use of smart-end technology devices, results in various security related concerns, which include detection of anomalous data traffic on the internet. Unravelling legitimate traffic from malignant traffic is a complex task itself. Many attacks affect system resources thereby degenerating their computing performance. In this paper we propose a framework of supervised model implemented using machine learning algorithms which can enhance or aid the existing intrusion detection systems, for detection of variety of attacks. Here KDD (knowledge data and discovery) dataset is used as a benchmark. In accordance with detective abilities, we also analyze their performance, accuracy, alerts-logs and compute their overall detection rate. These machine learning algorithms are validated and tested in terms of accuracy, precision, true-false positives and negatives. Experimental results show that these methods are effective, generating low false positives and can be operative in building a defense line against network intrusions. Further, we compare these algorithms in terms of various functional parameters


2019 ◽  
Author(s):  
Farhaan Noor Hamdani ◽  
Farheen Siddiqui

With the advent of the internet, there is a major concern regarding the growing number of attacks, where the attacker can target any computing or network resource remotely Also, the exponential shift towards the use of smart-end technology devices, results in various security related concerns, which include detection of anomalous data traffic on the internet. Unravelling legitimate traffic from malignant traffic is a complex task itself. Many attacks affect system resources thereby degenerating their computing performance. In this paper we propose a framework of supervised model implemented using machine learning algorithms which can enhance or aid the existing intrusion detection systems, for detection of variety of attacks. Here KDD (knowledge data and discovery) dataset is used as a benchmark. In accordance with detective abilities, we also analyze their performance, accuracy, alerts-logs and compute their overall detection rate. These machine learning algorithms are validated and tested in terms of accuracy, precision, true-false positives and negatives. Experimental results show that these methods are effective, generating low false positives and can be operative in building a defense line against network intrusions. Further, we compare these algorithms in terms of various functional parameters


2020 ◽  
Vol 10 (22) ◽  
pp. 8179
Author(s):  
Young Hwan Choi ◽  
Ali Sadollah ◽  
Joong Hoon Kim

This study proposes a novel detection model for the detection of cyber-attacks using remote sensing data on water distribution systems (i.e., pipe flow sensor, nodal pressure sensor, tank water level sensor, and programmable logic controllers) by machine learning approaches. The most commonly used and well-known machine learning algorithms (i.e., k-nearest neighbor, support vector machine, artificial neural network, and extreme learning machine) were compared to determine the one with the best detection performance. After identifying the best algorithm, several improved versions of the algorithm are compared and analyzed according to their characteristics. Their quantitative performances and abilities to correctly classify the state of the urban water system under cyber-attack were measured using various performance indices. Among the algorithms tested, the extreme learning machine (ELM) was found to exhibit the best performance. Moreover, this study not only has identified excellent algorithm among the compared algorithms but also has considered an improved version of the outstanding algorithm. Furthermore, the comparison was performed using various representative performance indices to quantitatively measure the prediction accuracy and select the most appropriate model. Therefore, this study provides a new perspective on the characteristics of various versions of machine learning algorithms and their application to different problems, and this study may be referenced as a case study for future cyber-attack detection fields.


Author(s):  
Sheikh Shehzad Ahmed

The Internet is used practically everywhere in today's digital environment. With the increased use of the Internet comes an increase in the number of threats. DDoS attacks are one of the most popular types of cyber-attacks nowadays. With the fast advancement of technology, the harm caused by DDoS attacks has grown increasingly severe. Because DDoS attacks may readily modify the ports/protocols utilized or how they function, the basic features of these attacks must be examined. Machine learning approaches have also been used extensively in intrusion detection research. Still, it is unclear what features are applicable and which approach would be better suited for detection. With this in mind, the research presents a machine learning-based DDoS attack detection approach. To train the attack detection model, we employ four Machine Learning algorithms: Decision Tree classifier (ID3), k-Nearest Neighbors (k-NN), Logistic Regression, and Random Forest classifier. The results of our experiments show that the Random Forest classifier is more accurate in recognizing attacks.


Nowadays, the Computer Networks and the internet are increased. Lots of information is accessed and allowed to the users to share the information to the Internet. One of the major issues with internet was different types of attack. Ransomware is a one kind of attack or it is malicious software that threatens to publish the victim's data. A variety of threats is the main target for the effective network security and avoids them from spreading or entering to the networks the network security on computer essential for computer networks. Ransom ware is a critical threat in network security since each day the raising of ransomware gets abundant. The major problem by the researchers is the prediction of ransomware. This paper planned to carry out a review on the different method to detect ransomware. Ransomware detection is very much helpful on minimizing the workload of analyst and for determining the variation in hidden Ransomware samples. Using machine learning algorithms Ransomware detected efficiently and trustfully.


Telecom IT ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 50-55
Author(s):  
D. Saharov ◽  
D. Kozlov

The article deals with the СoAP Protocol that regulates the transmission and reception of information traf-fic by terminal devices in IoT networks. The article describes a model for detecting abnormal traffic in 5G/IoT networks using machine learning algorithms, as well as the main methods for solving this prob-lem. The relevance of the article is due to the wide spread of the Internet of things and the upcoming update of mobile networks to the 5g generation.


Sign in / Sign up

Export Citation Format

Share Document