scholarly journals An Enhanced on Bidirectional LI-FI Attocell Access Point Slicing and Virtualization using Das2 Conspire

2019 ◽  
Vol 8 (2S3) ◽  
pp. 1109-1120 ◽  
Keyword(s):  

LiFi attocell get to systems will be conveyed wherever to help different applications and administration provisioning to different end-clients. The LiFi foundation suppliers should offer LiFi passages (APs) assets as an administration. This, be that as it may, requires an exploration test to be fathomed to progressively and adequately allot assets amonspecialist co-ops (SPs), while ensuring execution detachment among them and their separate clients. This paper presents an autonomic asset cutting (virtualization) conspire, which acknowledges autonomic administration and setup of virtual APs, in a LiFi Attocell get to arrange, in light of SP’s and their clients benefit necessities. The proposed asset cutting plan gathers and breaks down the movement insights of the distinctive applications upheld on the cuts characterized in each LiFi AP and appropriates the accessible assets reasonably and relatively among them. It utilizes a control calculation to change the base conflict window of client gadgets to accomplish the objective throughput and guarantee broadcast appointment decency among SP’s and their clients.

2004 ◽  
Vol 171 (4S) ◽  
pp. 502-502 ◽  
Author(s):  
Brian R. Matlaga ◽  
Steve J. Hodges ◽  
Ojas Shah ◽  
Dean G. Assimos

2018 ◽  
Vol 6 (3) ◽  
pp. 13-19
Author(s):  
Isam Aameer Ibrahim ◽  
Haider TH Salim ◽  
Hasan F. Khazaal

One of the major global issues today is energy consumption. Consequently, power management was introduced in various communication technologies. For IEEE 802.11wireless communication, there is a Power Saving Mode scheme (PSM) for increase the battery life of cell phone. In this PSM, there are two key parameters: beacon period interval (BI) and listen interval(LI). In most work these values are chosen arbitrary. Here, a scheme to determine the optimal BI and LI for accomplishing the most astounding conceivable vitality proficiency is introduced. This is implemented with the application of a numerical sample to the standard IEEE 802.11 PSM and Access Point-PSM (AP-PSM) schemes. To ensure the quality of network performance analysis on the normal and change of parcel delays is doing. The well-known queuing (M/G/I) model with bulk services are utilized. After the implementation of the proposed analysis, “maximum rest plan time ratio optimal Sleep Scheme (OSS)” which is when participate stations stay in the doze mode it can be determined. In this research shows that the optimal BI and LI produce optimal OSS time ratio scheme also achieved optimal average and variance of packet delay.


2015 ◽  
Vol 9 (1) ◽  
pp. 553-559
Author(s):  
HU Xin-xin ◽  
Chen Chun-lan

In order to optimize the electric energy quality of HVDC access point, a modular multilevel selective harmonic elimination pulse-width modulation (MSHE-PWM) method is proposed. On the basis of keeping the minimum action frequency of the power device, MSHE-PWM method can meet the requirement for accurately eliminating low-order harmonics in the output PWM waveform. Firstly, establish the basic mathematical model of MMC topology and point out the voltage balance control principle of single modules; then, analyze offline gaining principle and realization way of MSHEPWM switching angle; finally, verify MSHE-PWM control performance on the basis of MMC reactive power compensation experimental prototype. The experimental result shows that the proposed MSHE-PWM method can meet such performance indexes as low switching frequency and no lower-order harmonics, and has verified the feasibility and effectiveness thereof for optimizing the electric energy quality of HVDC access point.


Author(s):  
Tianpei Tang ◽  
Senlai Zhu ◽  
Yuntao Guo ◽  
Xizhao Zhou ◽  
Yang Cao

Evaluating the safety risk of rural roadsides is critical for achieving reasonable allocation of a limited budget and avoiding excessive installation of safety facilities. To assess the safety risk of rural roadsides when the crash data are unavailable or missing, this study proposed a Bayesian Network (BN) method that uses the experts’ judgments on the conditional probability of different safety risk factors to evaluate the safety risk of rural roadsides. Eight factors were considered, including seven factors identified in the literature and a new factor named access point density. To validate the effectiveness of the proposed method, a case study was conducted using 19.42 km long road networks in the rural area of Nantong, China. By comparing the results of the proposed method and run-off-road (ROR) crash data from 2015–2016 in the study area, the road segments with higher safety risk levels identified by the proposed method were found to be statistically significantly correlated with higher crash severity based on the crash data. In addition, by comparing the respective results evaluated by eight factors and seven factors (a new factor removed), we also found that access point density significantly contributed to the safety risk of rural roadsides. These results show that the proposed method can be considered as a low-cost solution to evaluating the safety risk of rural roadsides with relatively high accuracy, especially for areas with large rural road networks and incomplete ROR crash data due to budget limitation, human errors, negligence, or inconsistent crash recordings.


2021 ◽  
Author(s):  
Mazher Mohammed ◽  
Dominique N Johnson ◽  
Lei A Wang ◽  
Scott W Harden ◽  
Wanhui Sheng ◽  
...  

Abstract Aims These studies evaluate whether angiotensin type-2 receptors (AT2Rs) that are expressed on γ-aminobutyric acid (GABA) neurons in the nucleus of the solitary tract (NTS) represent a novel endogenous blood pressure-lowering mechanism. Methods and results Experiments combined advanced genetic and neuroanatomical techniques, pharmacology, electrophysiology, and optogenetics in mice to define the structure and cardiovascular-related function of NTS neurons that contain AT2R. Using mice with Cre-recombinase directed to the AT2R gene, we discovered that optogenetic stimulation of AT2R-expressing neurons in the NTS increases GABA release and blood pressure. To evaluate the role of the receptor, per se, in cardiovascular regulation, we chronically delivered C21, a selective AT2R agonist, into the brains of normotensive mice and found that central AT2R activation reduces GABA-related gene expression and blunts the pressor responses induced by optogenetic excitation of NTS AT2R neurons. Next, using in situ hybridization, we found that the levels of Agtr2 mRNAs in GABAergic NTS neurons rise during experimentally induced hypertension, and we hypothesized that this increased expression may be exploited to ameliorate the disease. Consistent with this, final experiments revealed that central administration of C21 attenuates hypertension, an effect that is abolished in mice lacking AT2R in GABAergic NTS neurons. Conclusion These studies unveil novel hindbrain circuits that maintain arterial blood pressure, and reveal a specific population of AT2R that can be engaged to alleviate hypertension. The implication is that these discrete receptors may serve as an access point for activating an endogenous depressor circuit.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 509
Author(s):  
Iqra Hameed ◽  
Pham-Viet Tuan ◽  
Mario R. Camana ◽  
Insoo Koo

In this paper, we study the transmit power minimization problem with optimal energy beamforming in a multi-antenna wireless powered communication network (WPCN). The considered network consists of one hybrid access point (H-AP) with multiple antennae and multiple users with a single antenna each. The H-AP broadcasts an energy signal on the downlink, using energy beamforming to enhance the efficiency of the transmit energy. In this paper, we jointly optimize the downlink time allocation for wireless energy transfer (WET), the uplink time allocation for each user to send a wireless information signal to the H-AP, the power allocation to each user on the uplink, and the downlink energy beamforming vectors while controlling the transmit power at the H-AP. It is challenging to solve this non-convex complex optimization problem because it is numerically intractable and involves high computational complexity. We exploit a sequential parametric convex approximation (SPCA)-based iterative method, and propose optimal and sub-optimal solutions for the transmit power minimization problem. All the proposed schemes are verified by numerical simulations. Through the simulation results, we present the performance of the proposed schemes based on the effect of the number of transmit antennae and the number of users in the proposed WPCN. Through the performance evaluation, we show that the SPCA-based joint optimization solution performance is superior to other solutions.


Sign in / Sign up

Export Citation Format

Share Document