scholarly journals Hybrid Power Generation System Using Solar and Biomass Power Generation System

2019 ◽  
Vol 8 (2S11) ◽  
pp. 2133-2135

The renewable energy is the future of human race without optimally harnessing renewable energy human race will not move forward. As the non-renewable source of energy are moving towards depletion each day, the technological advancement toward renewable energy is moving with a fast pace. Each day we heard about a new technology, in this paper a hybrid system energy system is discussed. The hybrid system is achieved by utilizing solar energy and biomass energy. The system using a set of solar panel, biomass gasifier, boiler, steam turbine, generator, inverter and battery.

2017 ◽  
pp. 1438-1460 ◽  
Author(s):  
Vincent Anayochukwu Ani

Telecommunications industry requires efficient, reliable and cost-effective hybrid power system as alternative to the power supplied by diesel generator. This paper proposed an operational control algorithm that will be used to control and supervise the operations of PV/Wind-Diesel hybrid power generation system for GSM base station sites. The control algorithm was developed in such a way that it coordinates when power should be generated by renewable energy (PV panels and Wind turbine) and when it should be generated by diesel generator and is intended to maximize the use of renewable system while limiting the use of diesel generator. Diesel generator is allocated only when the demand cannot be met by the renewable energy sources including battery bank. The developed algorithm was used to study the operations of the hybrid PV/Wind-Diesel energy system. The control simulation shows that the developed algorithm reduces the operational hours of the diesel generator thereby reducing the running cost of the hybrid energy system as well as the pollutant emissions. With the data collected from the site, a detailed economic and environmental analysis was carried out using micro power optimization software homer. The study evaluates savings associated with conversion of the diesel powered system to a PV/Wind-Diesel hybrid power system.


2014 ◽  
Vol 3 (1) ◽  
pp. 101-120 ◽  
Author(s):  
Vincent Anayochukwu Ani

Telecommunications industry requires efficient, reliable and cost-effective hybrid power system as alternative to the power supplied by diesel generator. This paper proposed an operational control algorithm that will be used to control and supervise the operations of PV/Wind-Diesel hybrid power generation system for GSM base station sites. The control algorithm was developed in such a way that it coordinates when power should be generated by renewable energy (PV panels and Wind turbine) and when it should be generated by diesel generator and is intended to maximize the use of renewable system while limiting the use of diesel generator. Diesel generator is allocated only when the demand cannot be met by the renewable energy sources including battery bank. The developed algorithm was used to study the operations of the hybrid PV/Wind-Diesel energy system. The control simulation shows that the developed algorithm reduces the operational hours of the diesel generator thereby reducing the running cost of the hybrid energy system as well as the pollutant emissions. With the data collected from the site, a detailed economic and environmental analysis was carried out using micro power optimization software homer. The study evaluates savings associated with conversion of the diesel powered system to a PV/Wind-Diesel hybrid power system.


2021 ◽  
Vol 25 (4 Part B) ◽  
pp. 2905-2912
Author(s):  
Bowen Wang

In the smart grid context, the article combines SEGS-VI solar thermal power station parameters to establish a solar thermal power generation system model. The thesis is based on the First and Second laws of thermodynamics. It uses the white box model analysis method of the energy system to calculate the solar thermal power generation system-concentrating and collecting subsystem, heat exchange subsystem, and power subsystem to obtain the subsystems dissipation of each process. Finally, the article uses the white box model analysis of the total energy system to treat the subsystems as white boxes, and connects them to form a white box network, makes a reasonable evaluation of the energy consumption status of the total energy system, and finds the weak links in the energy use process of the system. Provide a basis for system energy saving.


2013 ◽  
Vol 385-386 ◽  
pp. 1122-1126
Author(s):  
Yue Hua Huang ◽  
Qian Cheng Li ◽  
Chen Chen ◽  
Na Peng ◽  
Zuo Dong Duan ◽  
...  

Due to the lack of fossil fuels, people are paying more and more attention to renewable energy. Wind energy is one of the important renewable energy. Unpredictability and volatility of the wind source make the output power unstable, so we need to control the active Power. This paper uses fuzzy control method, and the simulation results show that fuzzy control method mentioned in this paper is better than the conventional PI control for Wind power, the nonlinear system. Based on the analysis of pitch control theory and control process, we design fuzzy pitch controller and its model. We simulates gust wind speed imitates, wind turbine control and verifies the effects of the blur pitch control in a constant speed and constant frequency wind power generation system. According to the results of the simulation, we know the pitch controller of fuzzy logic has a better effect on the active control of the generator of the wind power generation system.


Author(s):  
S. Chiba ◽  
M. Waki ◽  
C. Jiang ◽  
K. Fujita

Abstract As industrialization, worldwide population growth, and improvements in the living standards in developing countries continue, demands for energy, food, and water, likewise surge. This in turn accelerates global warming, and its resultant extreme weather effects. Among the measures proposed to meet the growing energy demands, the use of renewable energy is gaining more and more attention. In particular, wave power generation is attracting a great deal of attention as an effective use of ocean energy. However, current wave generators are large and very expensive relative to their output. Furthermore, they cannot generate power efficiently with wave directivity, small amplitude waves and so on. For these reasons, widespread use is very limited. In order to solve these problems, this paper discusses the possibility of a recently developed wave power generator that uses a newly developed dielectric elastomer (DE) as a new way to harvest renewable energy. We also discuss the technical breakthrough of building a mega power generation system using DEs.


2013 ◽  
Vol 724-725 ◽  
pp. 1361-1365
Author(s):  
Xian Tao Zeng ◽  
Qian Hua Ren

In this paper, a method of magnetoelectricity power generation system for vehicle on the downhill of expressways is proposed. This system is a clean energy system that can be reused. Its structure includes car magnetic poles, magnetic poles imbedded in road surface, closed circuit imbedded in road surface, rectifier, inverter and storage battery. Multi-unit magnetic poles and closed circuits imbedded in the road surface are used in this invention, so when the car poles move with the running down of cars on downhill, magnetic flow in closed circuits will change to produce a technique of group control power generation. From the simulated system in the test, it can be seen that it is efficient and effective in generating power.


Sign in / Sign up

Export Citation Format

Share Document