scholarly journals Retail Giant Sales Forecasting using Machine Learning

2019 ◽  
Vol 8 (2S11) ◽  
pp. 2408-2411

Sales forecasting is widely recognized and plays a major role in an organization’s decision making. It is an integral part in business execution of retail giants, so that they can change their strategy to improve sales in the near future. This helps in better management of their resources like machine, money and manpower. Forecasting the sales will help in managing the revenue and inventory accordingly. This paper proposes a model that can forecast most profitable segments at granular level. As most retail giants have many branches in different locations, consolidation of sales are hard using data mining. Instead using machine learning model helps in getting reliable and accurate results. This paper helps in understanding the sales trend to monitor or predict future applicable on different types of sales patterns and products to produce accurate prediction results.

Author(s):  
Akshata Kulkarni

Abstract: Officials around the world are using several COVID-19 outbreak prediction models to make educated decisions and enact necessary control measures. In this study, we developed a Machine Learning model which predicts and forecasts the COVID-19 outbreak in India, with the goal of determining the best regression model for an in-depth examination of the novel coronavirus. Based on data available from January 31 to October 31, 2020, collected from Kaggle, this model predicts the number of confirmed cases in Maharashtra. We're using a Machine Learning model to foresee the future trend of these situations. The project has the potential to demonstrate the importance of information dissemination in improving response time and planning ahead of time to help reduce risk.


2020 ◽  
Author(s):  
Mingjian Wen ◽  
Samuel Blau ◽  
Evan Spotte-Smith ◽  
Shyam Dwaraknath ◽  
Kristin Persson

<div><div><div><p>A broad collection of technologies, including e.g. drug metabolism, biofuel combustion, photochemical decontamination of water, and interfacial passivation in energy production/storage systems rely on chemical processes that involve bond-breaking molecular reactions. In this context, a fundamental thermodynamic property of interest is the bond dissociation energy (BDE) which measures the strength of a chemical bond. Fast and accurate prediction of BDEs for arbitrary molecules would lay the groundwork for data-driven projections of complex reaction cascades and hence a deeper understanding of these critical chemical processes and, ultimately, how to reverse design them. In this paper, we propose a chemically inspired graph neural network machine learning model, BonDNet, for the rapid and accurate prediction of BDEs. BonDNet maps the difference between the molecular representations of the reactants and products to the reaction BDE. Because of the use of this difference representation and the introduction of global features, including molecular charge, it is the first machine learning model capable of predicting both homolytic and heterolytic BDEs for molecules of any charge. To test the model, we have constructed a dataset of both homolytic and heterolytic BDEs for neutral and charged (1 and +1) molecules. BonDNet achieves a mean absolute error (MAE) of 0.022 eV for unseen test data, significantly below chemical accuracy (0.043 eV). Besides the ability to handle complex bond dissociation reactions that no previous model could con- sider, BonDNet distinguishes itself even in only predicting homolytic BDEs for neutral molecules; it achieves an MAE of 0.020 eV on the PubChem BDE dataset, a 20% improvement over the previous best performing model. We gain additional insight into the model’s predictions by analyzing the patterns in the features representing the molecules and the bond dissociation reactions, which are qualitatively consistent with chemical rules and intuition. BonDNet is just one application of our general approach to representing and learning chemical reactivity, and it could be easily extended to the prediction of other reaction properties in the future.</p></div></div></div>


Author(s):  
Ali Asgary ◽  
Svetozar Zarko Valtchev ◽  
Michael Chen ◽  
Mahdi M. Najafabadi ◽  
Jianhong Wu

Planning for mass vaccination against SARS-Cov-2 is ongoing in many countries considering that vaccine will be available for the general public in the near future. Rapid mass vaccination while a pandemic is ongoing requires the use of traditional and new temporary vaccination clinics. Use of drive-through has been suggested as one of the possible effective temporary mass vaccinations among other methods. In this study, we present a machine learning model that has been developed based on a big dataset derived from 125K runs of a drive-through mass vaccination simulation tool. The results show that the model is able to reasonably well predict the key outputs of the simulation tool. Therefore, the model has been turned to an online application that can help mass vaccination planners to assess the outcomes of different types of drive-through mass vaccination facilities much faster.


2020 ◽  
Author(s):  
Mingjian Wen ◽  
Samuel Blau ◽  
Evan Spotte-Smith ◽  
Shyam Dwaraknath ◽  
Kristin Persson

<div><div><div><p>A broad collection of technologies, including e.g. drug metabolism, biofuel combustion, photochemical decontamination of water, and interfacial passivation in energy production/storage systems rely on chemical processes that involve bond-breaking molecular reactions. In this context, a fundamental thermodynamic property of interest is the bond dissociation energy (BDE) which measures the strength of a chemical bond. Fast and accurate prediction of BDEs for arbitrary molecules would lay the groundwork for data-driven projections of complex reaction cascades and hence a deeper understanding of these critical chemical processes and, ultimately, how to reverse design them. In this paper, we propose a chemically inspired graph neural network machine learning model, BonDNet, for the rapid and accurate prediction of BDEs. BonDNet maps the difference between the molecular representations of the reactants and products to the reaction BDE. Because of the use of this difference representation and the introduction of global features, including molecular charge, it is the first machine learning model capable of predicting both homolytic and heterolytic BDEs for molecules of any charge. To test the model, we have constructed a dataset of both homolytic and heterolytic BDEs for neutral and charged (1 and +1) molecules. BonDNet achieves a mean absolute error (MAE) of 0.022 eV for unseen test data, significantly below chemical accuracy (0.043 eV). Besides the ability to handle complex bond dissociation reactions that no previous model could con- sider, BonDNet distinguishes itself even in only predicting homolytic BDEs for neutral molecules; it achieves an MAE of 0.020 eV on the PubChem BDE dataset, a 20% improvement over the previous best performing model. We gain additional insight into the model’s predictions by analyzing the patterns in the features representing the molecules and the bond dissociation reactions, which are qualitatively consistent with chemical rules and intuition. BonDNet is just one application of our general approach to representing and learning chemical reactivity, and it could be easily extended to the prediction of other reaction properties in the future.</p></div></div></div>


Author(s):  
Palanivel Kuppusamy ◽  
Suresh Joseph K.

A smart education system uses emerging technologies and generates a vast amount of heterogeneous data in the learning environment. The conventional methods presently used by the educational administrators for decision-making are minimal and take more time to generate the results. The educational administrators could not be able to predict the results quickly and advance for better decision-making. Today, artificial intelligence approaches are widely used in educational systems for automating educational processes. These approaches achieve a better, efficient, and effective modern education system. Integrating machine learning deep learning techniques with a smart education system can automatically analyze the generated data for better decision-making and provide recommendations to students and educational administrators. This chapter aims to introduce a machine learning model to predict the outcomes in a smart education system.


KANT ◽  
2020 ◽  
Vol 37 (4) ◽  
pp. 205-209
Author(s):  
Anastasiia Sterlikova

The article discusses the possibility of machine learning model for analyzing the state of credit institutions by their performance indicators and assessing the likelihood of revoking a license from a single participant. The conclusion is made about the possibility of using the machine learning model in the supervisory activities of the Bank of Russia as an auxiliary tool.


2020 ◽  
Author(s):  
Mingjian Wen ◽  
Samuel Blau ◽  
Evan Spotte-Smith ◽  
Shyam Dwaraknath ◽  
Kristin Persson

<div><div><div><p>A broad collection of technologies, including e.g. drug metabolism, biofuel combustion, photochemical decontamination of water, and interfacial passivation in energy production/storage systems rely on chemical processes that involve bond-breaking molecular reactions. In this context, a fundamental thermodynamic property of interest is the bond dissociation energy (BDE) which measures the strength of a chemical bond. Fast and accurate prediction of BDEs for arbitrary molecules would lay the groundwork for data-driven projections of complex reaction cascades and hence a deeper understanding of these critical chemical processes and, ultimately, how to reverse design them. In this paper, we propose a chemically inspired graph neural network machine learning model, BonDNet, for the rapid and accurate prediction of BDEs. BonDNet maps the difference between the molecular representations of the reactants and products to the reaction BDE. Because of the use of this difference representation and the introduction of global features, including molecular charge, it is the first machine learning model capable of predicting both homolytic and heterolytic BDEs for molecules of any charge. To test the model, we have constructed a dataset of both homolytic and heterolytic BDEs for neutral and charged (1 and +1) molecules. BonDNet achieves a mean absolute error (MAE) of 0.022 eV for unseen test data, significantly below chemical accuracy (0.043 eV). Besides the ability to handle complex bond dissociation reactions that no previous model could con- sider, BonDNet distinguishes itself even in only predicting homolytic BDEs for neutral molecules; it achieves an MAE of 0.020 eV on the PubChem BDE dataset, a 20% improvement over the previous best performing model. We gain additional insight into the model’s predictions by analyzing the patterns in the features representing the molecules and the bond dissociation reactions, which are qualitatively consistent with chemical rules and intuition. BonDNet is just one application of our general approach to representing and learning chemical reactivity, and it could be easily extended to the prediction of other reaction properties in the future.</p></div></div></div>


Sign in / Sign up

Export Citation Format

Share Document