scholarly journals Sensitization and Corrosion of 409M Ferritic Stainless Steel by Different Welding Processes

2019 ◽  
Vol 8 (2) ◽  
pp. 3904-3911

The aim of this research work was to analyze the sensitization due to the effect of welding (Shielded Metal Arc Welding, Gas Tungsten Arc Welding & Gas Metal Arc Welding) heat in heat affected zone area in terms of metallurgical properties, mechanical properties and corrosion of base metal comparatively. Also the effect of different chemicals / acidic environments on tensile properties was investigated. The plates of 3 mm thickness of 409M Ferritic Stainless Steel welded at constant current of 90A by three different welding processes with the same filler metal. The microstructure observation was made after Marble reagent chemical etched. Then tensile properties were investigated and comparative analysis done between the tensile properties i.e. before and after the chemical exposure given to it with the parent metal. After completion of experimental work it is found that SMAW, GMAW and GTAW have affected the microstructure of 409M Ferritic Stainless Steel. Due to the acidic environments/ Chemical exposures the strength and ductility of the metal affects. But comparatively GTAW has shown better process than GMAW and SMAW for welding of 409M Ferritic Stainless Steel. It should be used with caution in sulphuric acid environments than chloride environments to resist corrosion.


2021 ◽  
Author(s):  
SERAFINO CARUSO ◽  
STANO IMBROGNO

Abstract Grain growth and hardness variation occurring in high temperature Heat Affected Zone (HAZ) during the welding processes are two thermal dependant aspects of great interest for both academic and industrial research activities. This paper presents an innovative Finite Element (FE) model capable to describe the grain growth and the hardness decrease that occur during the Gas Metal Arc Welding (GMAW) of commercial AISI 441 steel. The commercial FE software SFTC DEFORM-3DTM was used to simulate the GMAW process and a user subroutine was developed including a physical based model and the Hall-Petch (H-P) equation to predict grain size variation and hardness change. The model was validated by comparison with the experimental results showing its reliability in predicting important welding characteristics temperature dependant. The study provides an accurate numerical model (i.e. user subroutine, heat source fitting, geometry,…) able to successfully predict the thermal phenomena (i.e. coarsening of the grains and hardening decrease) that occur in the HAZ during welding process of ferritic stainless steel.



2020 ◽  
Vol 1012 ◽  
pp. 296-301
Author(s):  
Clélia Ribeiro de Oliveira ◽  
Eloá Lopes Maia ◽  
Solange T. da Fonseca ◽  
Marcelo Martins ◽  
Julián Arnaldo Ávila Díaz ◽  
...  

Superduplex stainless steel alloy exhibit high mechanical and corrosion resistance, which main industrial application is in the petrochemical industry. The manufacture and maintenance of such equipment usually involve welding processes, followed by post-welded heat treatment and it often becomes impossible to apply heat treatments. Thereby, the purpose of this work is to verify the effect of a post-welded heat treatment on shielded metal arc welding in steel grade ASTM A890/A890M - grade 6A. The microstructure in the as-welded condition consisted of austenite, secondary austenite, and ferrite phases and, the post-welded heat treatment condition exhibited only austenite and ferrite. The hardness in the melt zone reached values of 300 HV after welding and, the value was reduced to 260 HV in the post-welded heat treatment condition.





2020 ◽  
Vol 45 (2) ◽  
pp. 1293-1303
Author(s):  
Sanjay Kumar Gupta ◽  
Avinash Ravi Raja ◽  
Meghanshu Vashista ◽  
Mohd Zaheer Khan Yusufzai






1987 ◽  
Vol 109 (2) ◽  
pp. 172-176 ◽  
Author(s):  
E. Kannatey-Asibu

Control of arc length is an essential component of the automation of arc welding processes. It is even more critical in gas metal arc welding where the arc length can vary substantially since it is closely tied to the melting process. Variations in arc length can greatly affect the quality of the weld produced. Even though there are currently systems available for controlling arc length, the theory necessary for microprocessor control is not fully developed. This paper develops a model of the gas metal arc welding process as a basis for arc length control, using the input to the wire feed drive motor as the control signal. The weld process is found to be first order after linearization, and that, coupled with the drive motor dynamics, produces a second-order system. The model is verified experimentally and is found to correlate very well with experimental results, the calculated time constant for the welding system in the constant current mode being 1.7 s, while the measured value is approximately 1.5 s.



Sign in / Sign up

Export Citation Format

Share Document