scholarly journals Effect of Delamination in Carbon Fibre Reinforced Polymer during Abrasive Water Jet Machining

Delamination is a type of defect produced while machining composites or layered materials. Due to matrix crack, shear crack and bending crack delamination is caused. Delamination is usually a separation along a plane parallel to the surface as in the separation of a coating from a substrate or layers of coating from each other. The aim of this project is to explore the study of delamination in carbon Fibre/epoxy composites under abrasive water jet machining. An experimental investigation was held to study the effect of delamination due to abrasive water jet machining on carbon fibre reinforced polymer. Effect of various parameters such as transverse speed, standoff distance, abrasive mass flow rate and water pressure was analysed. Taguchi method was used for overall analysis of parameters. Effect of Kerf width in CFRP material and on fibre cut was analysed step by step. Further observation was done on scanning electron microscopes. It can affect the compression strength of composite laminate and it will slowly cause the composite to experience failure through the buckling. Here the composite of Carbon Fibre Reinforced Polymer is made using carbon fibers and epoxy resin. Further cutting of CFRP is done using Abrasive water jet machining and analysis of delamination at various phases of the material is done. Analysis is done at which parameters delamination is reduced to minimum.

The main aim of this investigation is to study the surface roughness produced on abrasive water jet machining of the twill weaved carbon fibre reinforced epoxy composite. Abrasive water jet machining experiment was conducted as per L9 orthogonal array, by varying water pressure, transverse speed and SOD. The performance of the composite was analysed by measuring the surface roughness. Using Taguchi analysis, the influences of input parameter over the output response was analysed. It was found that the surface roughness is highly influenced by the transverse speed.


2019 ◽  
Author(s):  
Kristian Gjerrestad Andersen ◽  
Gbanaibolou Jombo ◽  
Sikiru Oluwarotimi Ismail ◽  
Segun Adeyemi ◽  
Rajini N ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document