scholarly journals An Augmented Reality Assisted Order Picking System using IoT

It is widely recognized that order picking is the most complicated and time-consuming task in warehouse operations and often termed as the major bottleneck in warehouse workflow. Over the years the process of order picking has been extensively studied and many methods have been proposed to deal with its challenges. However, most of these solutions involve complex and expensive components with elaborate setups. In this paper, we propose RASPICK a modular, robust and cost-efficient order picking system that is scalable and can be used in warehouses of all sizes. The proposed system aims to reduce the cognitive load on the picker by providing crucial and relevant information for each item on the picking list. For a baseline, the proposed system is also compared to manual paper-based picking and shows significant improvements in average trip-time for lists of different sizes. The system combines the convenience of Augmented Reality with the power of the Internet of things to facilitate central control and management of pickers and attempts to address the low-level order picking bottlenecks.

Author(s):  
WASIN ALKISHRI ◽  
Mahmood Al-Bahri

Biometrics In conjunction with the new development of the Internet of Things (IoT), augmented reality (AR) systems are evolving to visualize 3D virtual models of the real world into an intelligent and interactive virtual reality environment that facilitates physical identification of objects and defines their specifications efficiently. The integration between AR and IoT in a complementary way helps identify network-related items' specifications and interact with the Internet of Things more efficiently. An identity is a dedicated, publicly known attribute or set of names for an individual device. Typically, identifiers operate within a specific area or network, making it difficult to identify things globally. This paper explores the use of Augmented Reality (AR) Technology for identifying devices and displaying relevant information about the device to the user. Based on the developed model network, the developed system of identification of IoT devices was tested. Also, the traffic generated by the AR device when generating requests to the organization server was investigated. According to the test results, the system is undemanding to the main network indicators. The system-generated traffic is self-similar. The test results show that the server software can solve the problems of identifying IoT devices through interaction with augmented reality devices.


Author(s):  
Mariya Nazarkevych ◽  
Serhii Dmytruk ◽  
Volodymyr Hrytsyk ◽  
Olha Vozna ◽  
Anzhela Kuza ◽  
...  

Background: Systems of the Internet of Things are actively implementing biometric systems. For fast and high-quality recognition in sensory biometric control and management systems, skeletonization methods are used at the stage of fingerprint recognition. The analysis of the known skeletonization methods of Zhang-Suen, Hilditch, Ateb-Gabor with the wave skeletonization method has been carried out and it shows a good time and qualitative recognition results. Methods: The methods of Zhang-Suen, Hildich and thinning algorithm based on Ateb-Gabor filtration, which form the skeletons of biometric fingerprint images, are considered. The proposed thinning algorithm based on Ateb-Gabor filtration showed better efficiency because it is based on the best type of filtering, which is both a combination of the classic Gabor function and the harmonic Ateb function. The combination of this type of filtration makes it possible to more accurately form the surroundings where the skeleton is formed. Results: Along with the known ones, a new Ateb-Gabor filtering algorithm with the wave skeletonization method has been developed, the recognition results of which have better quality, which allows to increase the recognition quality from 3 to 10%. Conclusion: The Zhang-Suen algorithm is a 2-way algorithm, so for each iteration, it performs two sets of checks during which pixels are removed from the image. Zhang-Suen's algorithm works on a plot of black pixels with eight neighbors. This means that the pixels found along the edges of the image are not analyzed. Hilditch thinning algorithm occurs in several passages, where the algorithm checks all pixels and decides whether to replace a pixel from black to white if certain conditions are satisfied. This Ateb-Gabor filtering will provide better performance, as it allows to obtain more hollow shapes, organize a larger range of curves. Numerous experimental studies confirm the effectiveness of the proposed method.


Author(s):  
Valentina Pennacchietti ◽  
Katharina Stoelzel ◽  
Anna Tietze ◽  
Erwin Lankes ◽  
Andreas Schaumann ◽  
...  

Abstract Introduction Endoscopic skull base approaches are broadly used in modern neurosurgery. The support of neuronavigation can help to effectively target the lesion avoiding complications. In children, endoscopic-assisted skull base surgery in combination with navigation systems becomes even more important because of the morphological variability and rare diseases affecting the sellar and parasellar regions. This paper aims to analyze our first experience on augmented reality navigation in endoscopic skull base surgery in a pediatric case series. Patients and methods A retrospective review identified seventeen endoscopic-assisted endonasal or transoral procedures performed in an interdisciplinary setting in a period between October 2011 and May 2020. In all the cases, the surgical target was a lesion in the sellar or parasellar region. Clinical conditions, MRI appearance, intraoperative conditions, postoperative MRI, possible complications, and outcomes were analyzed. Results The mean age of our patients was 14.5 ± 2.4 years. The diagnosis varied, but craniopharyngiomas (31.2%) were mostly represented. AR navigation was experienced to be very helpful for effectively targeting the lesion and defining the intraoperative extension of the pathology. In 65% of the oncologic cases, a radical removal was proven in postoperative MRI. The mean follow-up was 89 ± 79 months. There were no deaths in our series. No long-term complications were registered; two cerebrospinal fluid (CSF) fistulas and a secondary abscess required further surgery. Conclusion The implementation of augmented reality to endoscopic-assisted neuronavigated procedures within the skull base was feasible and did provide relevant information directly in the endoscopic field of view and was experienced to be useful in the pediatric cases, where anatomical variability and rarity of the pathologies make surgery more challenging.


Author(s):  
Rehnuma Haque ◽  
Md. Mariful Islam ◽  
Sarmin Salma ◽  
Md. Abdullah Al Jubair ◽  
Ng Giap Weng

2009 ◽  
Vol 25 (5-7) ◽  
pp. 461-467 ◽  
Author(s):  
Rupert Reif ◽  
Willibald A. Günthner

Author(s):  
I. Murph ◽  
M. McDonald ◽  
K. Richardson ◽  
M. Wilkinson ◽  
S. Robertson ◽  
...  

Within distracting environments, it is difficult to maintain attentional focus on complex tasks. Cognitive aids can support attention by adding relevant information to the environment, such as via augmented reality (AR). However, there may be a benefit in removing elements from the environment, such as irrelevant alarms, displays, and conversations. De-emphasis of distracting elements is a type of AR called Diminished Reality (DR). Although de-emphasizing distraction may help focus on a primary task, it may also reduce situational awareness (SA) of other activities that may become relevant. In the current study, participants will assemble a medical ventilator during a simulated emergency while experiencing varying levels of DR. Participants will also be probed to assess secondary SA. We anticipate that participants will have better accuracy and completion times in the full DR conditions but their SA will suffer. Future applications include the design of future DR systems and improved training methods.


2014 ◽  
Vol 616 ◽  
pp. 19-26 ◽  
Author(s):  
Jozef Novak-Marcincin ◽  
Jozef Torok ◽  
Miroslav Janak ◽  
Ludmila Novakova-Marcincinova

Monitoring of production process as a whole is currently possible with the progressive forms of computer simulation and displaying. The paper describes conceptual solution of improved diagnostic mapping of production process with use of the technology of augmented reality. The solution presents the powerful tool for visualization of diagnostic data useful mainly in the area of inspection, control and management of production operation.


Sign in / Sign up

Export Citation Format

Share Document