scholarly journals Design Analysis and Performance Evaluation of Annulus Patch Antennas

2019 ◽  
Vol 8 (3) ◽  
pp. 3116-3122 ◽  

The paper presents a detailed investigation of various types of circular ring patch antennas and their importance in Wireless Communications, especially under satellite Frequency Applications. The main focus is considered on the typical resonant frequencies, design parameters, theoretical foundations on the shape, equivalent circuits and various applications of the ring patch antennas. Design, simulation and comparison of different structures of patches with annulus patch were also presented to justify the investigation.

2019 ◽  
Vol 27 (4) ◽  
pp. 417-430
Author(s):  
Rajesh Kannan Megalingam ◽  
Venkat Rangan ◽  
Pranav Veliyara ◽  
Rithun Raj Krishna ◽  
Raghavendra Prabhu ◽  
...  

Author(s):  
Isaac F. Odesola ◽  
Ebenezer O. Ige ◽  
Idris O. Yunus

Since the beginning of civilization, cooking has been done by using biomass as fuel. They are used in stoves which cause wastage of fuel and also health problems. Thus, there is the need to analyze the thermal performance of a developed cook stove that operates on multifuel conditions. The stove was designed to work on sawdust, wood, groundnut and charcoal as the primary fuel. Prior to fabrication, design parameters were obtained using the appropriate governing equations. Inputs were further made to simplify the construction of the stove and to minimize heat loss to the surroundings. A thermal efficiency of 32.18%, 80.10%, 38.73% and 50.33% was achieved when the stove was fuelled with charcoal, sawdust, wood and groundnut husk respectively. The highest flame temperature was recorded as 205ºC when wood was used as fuel. The highest stove body temperature recorded was 56ºC. Wood took the shortest time (20 mins) to boil water compared to sawdust, charcoal and groundnut husk which took 29, 23 and 27 minutes respectively for 2 kg of water. The developed cook stove was found to be energy efficient for domestic cooking especially in the rural communities of Nigeria.  Although it has the potential to save fuel, further research could be carried out in the aspect of removing CO emission.


The consumption of electricity in urban as well as rural is increasing every day and became an essential commodity for household and industrial purposes. Unfortunately the availability of electrical energy in India is not sufficient to the required demand and it is essential to discover and generate energy from non-conventional sources with cheap cost. On the same time it is necessary to reduce the consumption of conventional sources and to save fuel. Among all the renewable resources, wind is one of the best resources available all the time at free of cost. Especially vertical axis wind turbines (VAWT) are self-starting, omni directional. They require no yaw mechanism to continuously orient towards the wind direction and provide a more reliable energy conversion technology, as compared to horizontal axis wind turbine. Particularly savonius vertical axis wind turbines (SVAWT) are suitable and practically possible at low or uncertain wind speed regimes. They can be fitted on rooftops and also suitable for the urban areas where electricity is not available properly. This project deals with the fabrication and performance evaluation of savonius vertical axis wind turbine using two blade rotor. The amount of power developed by the wind turbine is calculated under theoretical and practical conditions and aerodynamics coefficients are also estimated. And various design parameters of savonious rotor are identified and determined.


Author(s):  
Daniel Caicedo Diaz ◽  
Luis Lara-Valencia ◽  
John Blandon

This paper concerns the numerical performance evaluation of multi-degree-of-freedom systems equipped with Tuned Mass Dampers-Inerter (TMDIs); a passive control device used for the mitigation of mechanical vibrations induced by dynamic loads. The inerter device is commonly used to increase the apparent mass of classics tuned mass dampers (TMDs), improving its seismic performance. To evaluate the TMDI action, three case studies are employed, determined from three real buildings of Medellin city from low, medium to high rise (30 meters, 97 meters, and 144 meters, respectively). Optimum design parameters are found using a metaheuristic optimization based on the differential evolution method, first, for the minimization of the horizontal peak displacements, and then, for the minimization of the root mean square (RMS) response of displacements. Besides, the case studies are assessed using eight seismic accelerations records representative of the literature. Finally, the seismic performance is evaluated on each case study considering different levels of inertance induced by the inerter device: 5%, 20%, and 50% with respect to the total mass of the building, for which it is observed a better dynamic behavior when TMDIs with lower values of inertance are implemented.


Sign in / Sign up

Export Citation Format

Share Document