scholarly journals On Graphs with Equal Domination and Chromatic Transversal Domination Numbers

2019 ◽  
Vol 8 (3) ◽  
pp. 4455-4459

Let (G) denote the chromatic number of a graph G = (V,E). A dominating set D  V(G) is a set such that for every vertex v V(G) \ D there is at least one neighbor in D. The domination number (G) is the least cardinality of a dominating set of G. A chromatic transversal dominating set(CTDS) of a graph G is a dominating set D which intersects every color class of each -partition of G. The chromatic transversal domination number ct(G) is the least cardinality of a CTDS of G. In this paper, we characterize cubic graphs, block graphs and cactus graphs with equal domination number and chromatic transversal domination number .

2015 ◽  
Vol 07 (04) ◽  
pp. 1550043 ◽  
Author(s):  
B. S. Panda ◽  
Arti Pandey

In a graph [Formula: see text], a vertex [Formula: see text] dominates a vertex [Formula: see text] if either [Formula: see text] or [Formula: see text] is adjacent to [Formula: see text]. A subset of vertex set [Formula: see text] that dominates all the vertices of [Formula: see text] is called a dominating set of graph [Formula: see text]. The minimum cardinality of a dominating set of [Formula: see text] is called the domination number of [Formula: see text] and is denoted by [Formula: see text]. A proper coloring of a graph [Formula: see text] is an assignment of colors to the vertices of [Formula: see text] such that any two adjacent vertices get different colors. The minimum number of colors required for a proper coloring of [Formula: see text] is called the chromatic number of [Formula: see text] and is denoted by [Formula: see text]. A dominator coloring of a graph [Formula: see text] is a proper coloring of the vertices of [Formula: see text] such that every vertex dominates all the vertices of at least one color class. The minimum number of colors required for a dominator coloring of [Formula: see text] is called the dominator chromatic number of [Formula: see text] and is denoted by [Formula: see text]. In this paper, we study the dominator chromatic number for the proper interval graphs and block graphs. We show that every proper interval graph [Formula: see text] satisfies [Formula: see text], and these bounds are sharp. For a block graph [Formula: see text], where one of the end block is of maximum size, we show that [Formula: see text]. We also characterize the block graphs with an end block of maximum size and attaining the lower bound.


2015 ◽  
Vol 23 (2) ◽  
pp. 187-199
Author(s):  
C. Natarajan ◽  
S.K. Ayyaswamy

Abstract Let G = (V;E) be a graph. A set S ⊂ V (G) is a hop dominating set of G if for every v ∈ V - S, there exists u ∈ S such that d(u; v) = 2. The minimum cardinality of a hop dominating set of G is called a hop domination number of G and is denoted by γh(G). In this paper we characterize the family of trees and unicyclic graphs for which γh(G) = γt(G) and γh(G) = γc(G) where γt(G) and γc(G) are the total domination and connected domination numbers of G respectively. We then present the strong equality of hop domination and hop independent domination numbers for trees. Hop domination numbers of shadow graph and mycielskian graph of graph are also discussed.


2019 ◽  
Vol 13 (04) ◽  
pp. 2050071
Author(s):  
Derya Doğan Durgun ◽  
Berna Lökçü

Let [Formula: see text] be a graph and [Formula: see text] A dominating set [Formula: see text] is a set of vertices such that each vertex of [Formula: see text] is either in [Formula: see text] or has at least one neighbor in [Formula: see text]. The minimum cardinality of such a set is called the domination number of [Formula: see text], [Formula: see text] [Formula: see text] strongly dominates [Formula: see text] and [Formula: see text] weakly dominates [Formula: see text] if (i) [Formula: see text] and (ii) [Formula: see text] A set [Formula: see text] is a strong-dominating set, shortly sd-set, (weak-dominating set, shortly wd-set) of [Formula: see text] if every vertex in [Formula: see text] is strongly (weakly) dominated by at least one vertex in [Formula: see text]. The strong (weak) domination number [Formula: see text] of [Formula: see text] is the minimum cardinality of an sd-set (wd-set). In this paper, we present weak and strong domination numbers of thorn graphs.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
T. Tamizh Chelvam ◽  
T. Asir

A subset D of the vertex set of a graph G, is a dominating set if every vertex in V−D is adjacent to at least one vertex in D. The domination number γ(G) is the minimum cardinality of a dominating set of G. A subset of V−D, which is also a dominating set of G is called an inverse dominating set of G with respect to D. The inverse domination number γ′(G) is the minimum cardinality of the inverse dominating sets. Domke et al. (2004) characterized connected graphs G with γ(G)+γ′(G)=n, where n is the number of vertices in G. It is the purpose of this paper to give a complete characterization of graphs G with minimum degree at least two and γ(G)+γ′(G)=n−1.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Ramy Shaheen ◽  
Mohammad Assaad ◽  
Ali Kassem

An eternal dominating set of a graph G is a set of guards distributed on the vertices of a dominating set so that each vertex can be occupied by one guard only. These guards can defend any infinite series of attacks, an attack is defended by moving one guard along an edge from its position to the attacked vertex. We consider the “all guards move” of the eternal dominating set problem, in which one guard has to move to the attacked vertex, and all the remaining guards are allowed to move to an adjacent vertex or stay in their current positions after each attack in order to form a dominating set on the graph and at each step can be moved after each attack. The “all guards move model” is called the m -eternal domination model. The size of the smallest m -eternal dominating set is called the m -eternal domination number and is denoted by γ m ∞ G . In this paper, we find the domination number of Jahangir graph J s , m for s ≡ 1 , 2   mod   3 , and the m -eternal domination numbers of J s , m for s , m are arbitraries.


2021 ◽  
Vol vol. 23, no. 3 (Graph Theory) ◽  
Author(s):  
Hadi Alizadeh ◽  
Didem Gözüpek

A paired dominating set $P$ is a dominating set with the additional property that $P$ has a perfect matching. While the maximum cardainality of a minimal dominating set in a graph $G$ is called the upper domination number of $G$, denoted by $\Gamma(G)$, the maximum cardinality of a minimal paired dominating set in $G$ is called the upper paired domination number of $G$, denoted by $\Gamma_{pr}(G)$. By Henning and Pradhan (2019), we know that $\Gamma_{pr}(G)\leq 2\Gamma(G)$ for any graph $G$ without isolated vertices. We focus on the graphs satisfying the equality $\Gamma_{pr}(G)= 2\Gamma(G)$. We give characterizations for two special graph classes: bipartite and unicyclic graphs with $\Gamma_{pr}(G)= 2\Gamma(G)$ by using the results of Ulatowski (2015). Besides, we study the graphs with $\Gamma_{pr}(G)= 2\Gamma(G)$ and a restricted girth. In this context, we provide two characterizations: one for graphs with $\Gamma_{pr}(G)= 2\Gamma(G)$ and girth at least 6 and the other for $C_3$-free cactus graphs with $\Gamma_{pr}(G)= 2\Gamma(G)$. We also pose the characterization of the general case of $C_3$-free graphs with $\Gamma_{pr}(G)= 2\Gamma(G)$ as an open question.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1411
Author(s):  
Magda Dettlaff ◽  
Magdalena Lemańska ◽  
Jerzy Topp

The cardinality of a largest independent set of G, denoted by α(G), is called the independence number of G. The independent domination number i(G) of a graph G is the cardinality of a smallest independent dominating set of G. We introduce the concept of the common independence number of a graph G, denoted by αc(G), as the greatest integer r such that every vertex of G belongs to some independent subset X of VG with |X|≥r. The common independence number αc(G) of G is the limit of symmetry in G with respect to the fact that each vertex of G belongs to an independent set of cardinality αc(G) in G, and there are vertices in G that do not belong to any larger independent set in G. For any graph G, the relations between above parameters are given by the chain of inequalities i(G)≤αc(G)≤α(G). In this paper, we characterize the trees T for which i(T)=αc(T), and the block graphs G for which αc(G)=α(G).


10.37236/5711 ◽  
2016 ◽  
Vol 23 (4) ◽  
Author(s):  
Stéphane Bessy ◽  
Pascal Ochem ◽  
Dieter Rautenbach

As a natural variant of domination in graphs, Dankelmann et al. [Domination with exponential decay, Discrete Math. 309 (2009) 5877-5883] introduced exponential domination, where vertices are considered to have some dominating power that decreases exponentially with the distance, and the dominated vertices have to accumulate a sufficient amount of this power emanating from the dominating vertices. More precisely, if $S$ is a set of vertices of a graph $G$, then $S$ is an exponential dominating set of $G$ if $\sum\limits_{v\in S}\left(\frac{1}{2}\right)^{{\rm dist}_{(G,S)}(u,v)-1}\geq 1$ for every vertex $u$ in $V(G)\setminus S$, where ${\rm dist}_{(G,S)}(u,v)$ is the distance between $u\in V(G)\setminus S$ and $v\in S$ in the graph $G-(S\setminus \{ v\})$. The exponential domination number $\gamma_e(G)$ of $G$ is the minimum order of an exponential dominating set of $G$.In the present paper we study exponential domination in subcubic graphs. Our results are as follows: If $G$ is a connected subcubic graph of order $n(G)$, then $$\frac{n(G)}{6\log_2(n(G)+2)+4}\leq \gamma_e(G)\leq \frac{1}{3}(n(G)+2).$$ For every $\epsilon>0$, there is some $g$ such that $\gamma_e(G)\leq \epsilon n(G)$ for every cubic graph $G$ of girth at least $g$. For every $0<\alpha<\frac{2}{3\ln(2)}$, there are infinitely many cubic graphs $G$ with $\gamma_e(G)\leq \frac{3n(G)}{\ln(n(G))^{\alpha}}$. If $T$ is a subcubic tree, then $\gamma_e(T)\geq \frac{1}{6}(n(T)+2).$ For a given subcubic tree, $\gamma_e(T)$ can be determined in polynomial time. The minimum exponential dominating set problem is APX-hard for subcubic graphs.


2016 ◽  
Vol 13 (10) ◽  
pp. 6514-6518
Author(s):  
Minhong Sun ◽  
Zehui Shao

A (total) double dominating set in a graph G is a subset S ⊆ V(G) such that each vertex in V(G) is (total) dominated by at least 2 vertices in S. The (total) double domination number of G is the minimum size of a (total) double dominating set of G. We determine the total double domination numbers and give upper bounds for double domination numbers of generalized Petersen graphs. By applying an integer programming model for double domination numbers of a graph, we have determined some exact values of double domination numbers of these generalized Petersen graphs with small parameters. The result shows that the given upper bounds match these exact values.


2010 ◽  
Vol 02 (02) ◽  
pp. 199-205 ◽  
Author(s):  
JYHMIN KUO

Let V and A denote the vertex and edge sets of a digraph G. A set T ⊆V is a twin dominating set of G if for every vertex v ∈ V - T, there exist u, w ∈ T (possibly u = w) such that arcs (u, v), (v, w) ∈ A. The twin domination number γ*(G) of G is the cardinality of a minimum twin dominating set of G. In this note, we investigate the twin domination numbers of generalized de Bruijn digraph and generalized Kautz digraph. The bounds of twin domination number of special generalized Kautz digraphs are given.


Sign in / Sign up

Export Citation Format

Share Document