scholarly journals An Integrated Effect of Parameters on Mechanical Properties of Friction Stir Welded Dissimilar Aluminum Alloys

Welding has been the essence of the joining processes in various industrial and domestic applications. Friction Stir Welding has emerged as a potential solid-state welding process and has been used to weld two dissimilar Aluminum alloys AA 5083 O and AA 6082 T651. Generation of an empirical model for prior prediction of tensile properties from four prominent factors of Friction Stir Welding has been done. Four factors selected are tool rotation speed, tool transverse speed, tool tilt angle and square-shaped pin size. Tensile properties have been optimized using multivariable optimization. The relative impact of various factors on the tensile properties has been analyzed. Friction Stir Welding has been performed based on Response Surface Methodology and the design matrix was generated using Central composite rotatable design which includes five levels with 31 runs. The efficacy of the empirical models has been tested with Analysis of Variance and models generated were found accurate to predict the responses up to 95%. The response surfaces and contour plots of the input and response variables were generated and analyzed. The confirmatory run for the optimum values was performed with a percentage error of less than 3 percent. This paper may be useful in various industrial applications and an enhanced understanding of Friction Stir Welding.

2021 ◽  
Author(s):  
Bazani Shaik ◽  
Gosala Harinath Gowd ◽  
Bandaru Durga Prasad

Today is an era of metals including Aluminum alloys owing to a fundamental paradigm shift in research objectives. In addition to superior performance and lightweight criteria that are used to define the innovations of yore, scientists today are compelled to take into consideration the environment-friendliness of the new and novel materials being developed due to the concerns of maintaining a sustainable and safe existence. The solid-state Friction stir welding process has immense potential in the areas of automobiles, aerospace and construction industries due to its overwhelming advantages over the conventional fusion welding process of aluminum alloys. The thesis presents an experimental investigation of friction stir welding of dissimilar aluminum alloys AA7075T651 and AA6082T651. Mathematical modeling equations are developed to predict the tensile strength, impact strength, elongation, and micro-hardness of the dissimilar FSW joints AA7075T651 and AA6082T651. The process parameters are optimized for maximum tensile strength and hardness values. Post weld heat treatment is conducted and the metallurgical properties of the FS welded AA7075T651 and AA6082T651 are presented for different combinations of tool rotational speeds. Aluminum and its alloys are widely used in nonferrous alloys for many industrial applications. Aluminum exhibits a combination of an excellent mechanical strength with lightweight and thus it is steadily replacing steel in industrial applications where the strength to weight ratio plays a significant role. In conventional welding, the joining of aluminum is mainly associated with a high coefficient of thermal expansion, solidification shrinkage and dissolution of harmful gases in the molten metal during welding. The weld joints are also associated with segregation of secondary alloys and porosities which are detrimental to the joint qualities. Friction Stir Welding (FSW) and Friction Welding (FW) are the most popular emerging solid welding techniques in aircraft and shipbuilding industries. FSW is mainly used for the joining of metal plates and FW is mainly used for the joining of rods. Both techniques are suitable for high strength material having less weight. These techniques are environmentally friendly and easy to execute. Hence, the study of these techniques can contribute much to the field of green technology. This research work is dealt with the experimental and numerical investigations on FSW and FW of aluminum alloys.


2021 ◽  
Vol 890 ◽  
pp. 56-65
Author(s):  
Cristian Ciucă ◽  
Lia Nicoleta Boțilă ◽  
Radu Cojocaru ◽  
Ion Aurel Perianu

The results obtained by ISIM Timisoara to the development of the friction stir welding process (FSW) have supported the extension of the researches on some derived processes, including friction stir processing (FSP). The experimental programs (the researches) were developed within complex research projects, aspects regarding the principle of the process, modalities and techniques of application, experiments for specific applications, being approached. The paper presents good results obtained by friction stir processing of cast aluminum alloys and copper alloys. The optimal process conditions, optimal characteristics of the processing tools were defined. The complex characterization of the processed areas was done, the advantages of the process applying being presented, especially for the cast aluminum alloys: EN AW 4047, EN AW 5083 and EN AW 7021. The characteristics of the processed areas are compared with those of the base materials. The results obtained are a solid basis for substantiating of some specific industrial applications, especially in the automotive, aeronautical / aerospace fields.


2007 ◽  
Vol 561-565 ◽  
pp. 279-282 ◽  
Author(s):  
Masafumi Kokubo ◽  
Shinichi Kazui ◽  
Takao Kaneuchi ◽  
Yoshimasa Takayama ◽  
Hajime Kato ◽  
...  

Microstructural characterization and temperature analysis have been performed in friction stir welding (FSW) of A383 and 5052 dissimilar aluminum alloys. Marked difference in microstructure was observed between joints with different arrangements of materials. The temperature at four points on each side of the joint line was measured during FSW in various conditions. In addition, an analytical model assumed that the work generated by the rotation of the tool led to the work for stirring materials and heat generation of the material and the tool. The temperature of the retreating side (RS) for the joint of the advancing side (AS):A383/RS:5052 was about 50K higher than that of AS, while the temperatures of AS and RS for the joint of AS:5052/RS:A383 were almost the same. The experimental temperature could be calculated reasonably by using the model with assumption of the work for stirring the material.


2013 ◽  
Vol 842 ◽  
pp. 466-469 ◽  
Author(s):  
Zhen Zhong Chen ◽  
Ming Li ◽  
Xiao Ge Ma ◽  
Yao Xiao

AA7050and AA2024 aluminum alloys used in aviation were jointed by friction stir welding, and the tensile properties and fracture surfaces were investigated. The results show that the ultimate strength and the yield limit of welded materials can reach 90% and 75% for AA7075and AA2024 respectively, while the ultimate strength of AA7050/AA2024 FSW can reach 60.5% of AA7050 and 70.8% of AA2024, the yield limit can reach 46.2 % of AA7050 and 75.5% of AA2024. The equiaxial fine grains were found in weld nugget, the coarsen and distorted grains in the thermo-mechanically affected zone, and coarse grains in heat affected zone. The fractures occur at the advancing side between thermo-mechanically affected zone and heat affected zone. Dimples appeared on the fracture surfaces means that the fracture is ductile fracture.


Author(s):  
Morteza Ghaffarpour ◽  
Mohammad Kazemi ◽  
Mohammad Javad Mohammadi Sefat ◽  
Ahmad Aziz ◽  
Kamran Dehghani

In the present study, friction stir welding (FSW) and tungsten inert gas (TIG) techniques were used to join the dissimilar aluminum alloys of 5083-H12 and 6061-T6. The laboratory tests were designed using design of experiment (DOE) method. Variables for the FSW process were the rotational speed, traverse speed, shoulder diameter, and pin diameter. They changed in ranges of 700–2500 r/min, 25–400 mm/min, 10–14 mm, and 2–4 mm, respectively. In the case of TIG process, the variables were current intensity, traverse speed, and tilt angle. These parameters varied from 80 to 90 A, 200 to 400 mm/min, and 3° to 12°, respectively. The optimum amounts of parameters were obtained using response surface methodology (RSM). The RSM-based model was developed to predict ultimate tensile strength (UTS) of the welds produced. In FSW, the difference between predicted and measured UTS was about 1.28% and in TIG it was 1.78%. The good agreement between experimental and predicted results indicates the high accuracy of the developed model. Mechanical properties and also the microstructure of the welds were compared after optimizing both welding processes using RSM. The results showed that the welds produced by FSW indicated a considerably higher quality and also improved mechanical properties compared to TIG. Properties of the joints obtained by FSW in single-sided joints were more desirable. In the double-sided welds obtained by FSW these differences were of an even higher significance.


Sign in / Sign up

Export Citation Format

Share Document