scholarly journals An Efficient Data Stream Analytics Model for Real Time Internet of Things (Iot) Applications

Internet of Things (IoT), data analytics is supporting multiple applications. These numerous applications try to gather data from different environments, here the gathered data may be homogeneous or heterogeneous, but most of the data collected from multiple environments were heterogeneous, the task of gathering, processing, storing and the analysis that is being performed on data are still challenging. Providing security to all these things is also a challenging task due to untrusted networks and big data. Big data management in the ever-expanding network may rise several non-trivial concerns on data collection, data-efficient processing, analytics, and security. However, the above said scenarios depends on large scale sensor deployed. Sensors continuously transmit data to clouds for real time use, which can raise the issue of privacy disclosure because IoT devices may gather data including a kind of sensitive private information. In this context, we propose a two-layer system or model for analyzing IoT data, collected from multiple applications. The first layer is mainly used for gathering data from multiple environments and acts as a service-oriented interface to ingest data. The second layer is responsible for storing and analyses data securely. The Proposed solutions are implemented by the use of open source components.

2019 ◽  
Vol 6 (3) ◽  
pp. 4176-4187 ◽  
Author(s):  
Guorui Li ◽  
Jingsha He ◽  
Sancheng Peng ◽  
Weijia Jia ◽  
Cong Wang ◽  
...  

2017 ◽  
Vol 13 (7) ◽  
pp. 155014771772181 ◽  
Author(s):  
Seok-Woo Jang ◽  
Gye-Young Kim

This article proposes an intelligent monitoring system for semiconductor manufacturing equipment, which determines spec-in or spec-out for a wafer in process, using Internet of Things–based big data analysis. The proposed system consists of three phases: initialization, learning, and prediction in real time. The initialization sets the weights and the effective steps for all parameters of equipment to be monitored. The learning performs a clustering to assign similar patterns to the same class. The patterns consist of a multiple time-series produced by semiconductor manufacturing equipment and an after clean inspection measured by the corresponding tester. We modify the Line, Buzo, and Gray algorithm for classifying the time-series patterns. The modified Line, Buzo, and Gray algorithm outputs a reference model for every cluster. The prediction compares a time-series entered in real time with the reference model using statistical dynamic time warping to find the best matched pattern and then calculates a predicted after clean inspection by combining the measured after clean inspection, the dissimilarity, and the weights. Finally, it determines spec-in or spec-out for the wafer. We will present experimental results that show how the proposed system is applied on the data acquired from semiconductor etching equipment.


Author(s):  
Amitava Choudhury ◽  
Kalpana Rangra

Data type and amount in human society is growing at an amazing speed, which is caused by emerging new services such as cloud computing, internet of things, and location-based services. The era of big data has arrived. As data has been a fundamental resource, how to manage and utilize big data better has attracted much attention. Especially with the development of the internet of things, how to process a large amount of real-time data has become a great challenge in research and applications. Recently, cloud computing technology has attracted much attention to high performance, but how to use cloud computing technology for large-scale real-time data processing has not been studied. In this chapter, various big data processing techniques are discussed.


Author(s):  
Zablon Pingo ◽  
Bhuva Narayan

The privacy construct is an important aspect of internet of things (IoT) technologies as it is projected that over 20 billion IoT devices will be in use by 2022. Among other things, IoT produces big data and many industries are leveraging this data for predictive analytics to aid decision making in health, education, business, and other areas. Despite benefits in some areas, privacy issues have persisted in relation to the use of the data produced by many consumer products. The practices surrounding IoT and Big Data by service providers and third parties are associated with a negative impact to individuals. To protect consumers' privacy, a wide range of approaches to informational privacy protections exist. However, individuals are increasingly required to actively respond to control and manage their informational privacy rather than rely on any protection mechanisms. This chapter highlights privacy issues across consumers' use of IoT and identifies existing responses to enhance privacy awareness as a way of enabling IoT users to protect their privacy.


2020 ◽  
pp. 1260-1284
Author(s):  
Laura Belli ◽  
Simone Cirani ◽  
Luca Davoli ◽  
Gianluigi Ferrari ◽  
Lorenzo Melegari ◽  
...  

The Internet of Things (IoT) is expected to interconnect billions (around 50 by 2020) of heterogeneous sensor/actuator-equipped devices denoted as “Smart Objects” (SOs), characterized by constrained resources in terms of memory, processing, and communication reliability. Several IoT applications have real-time and low-latency requirements and must rely on architectures specifically designed to manage gigantic streams of information (in terms of number of data sources and transmission data rate). We refer to “Big Stream” as the paradigm which best fits the selected IoT scenario, in contrast to the traditional “Big Data” concept, which does not consider real-time constraints. Moreover, there are many security concerns related to IoT devices and to the Cloud. In this paper, we analyze security aspects in a novel Cloud architecture for Big Stream applications, which efficiently handles Big Stream data through a Graph-based platform and delivers processed data to consumers, with low latency. The authors detail each module defined in the system architecture, describing all refinements required to make the platform able to secure large data streams. An experimentation is also conducted in order to evaluate the performance of the proposed architecture when integrating security mechanisms.


2020 ◽  
Vol 6 (Supplement_1) ◽  
pp. 58-58
Author(s):  
Lamech Sigu ◽  
Fredrick Chite ◽  
Emma Achieng ◽  
Andrew Koech

PURPOSE The Internet of Things (IoT) is a technology that involves all things connected to the Internet that share data over a network without requiring human-to-human interaction or human-to-computer interaction. Information collected from IoT devices can help physicians identify the best treatment process for patients and reach accurate and expected outcomes. METHODS The International Cancer Institute is partnering to set up remote oncology clinics in sub-Saharan Africa. Medical oncologists and expert teams from across the world connect with oncology clinics in other Kenyan counties—Kisumu, Meru, Makueni, Garissa, Kakamega, Bungoma, Siaya, and Vihiga counties. The furthest county is Garissa, approximately 651.1 km from Eldoret, and the nearest is Vihiga at 100.4 km from Eldoret. This study began July 2019, and as of November 30th, the team has hosted 21 sessions with an average of 11 participants attending a session led by a medical oncologist. RESULTS IoT devices have become a way by which a patient gets all the information he or she needs from a physician without going to the clinic. Patient monitoring can be done in real time, allowing access to real-time information with improved patient treatment outcomes and a decrease in cost. Through IoT-enabled devices, the International Cancer Institute has set up weekly virtual tumor boards during which cancer cases are presented and discussed by all participating counties. An online training module on cancer is also offered. Furthermore, remote monitoring of a patient’s health helps to reduce the length of hospital stay and prevents readmissions. CONCLUSION In our setting, which has a few oncologists, use of IoT and tumor boards has helped to improve patient decision support as well as training for general physicians.


Sign in / Sign up

Export Citation Format

Share Document