scholarly journals Reaction Wheels Fault Isolation Onboard 3-Axis Controlled Satel-lite using Enhanced Random Forest with Multidomain Features

Author(s):  
Afshin Rahimi ◽  
Mofiyinoluwa O. Folami

As the number of satellite launches increases each year, it is only natural that an interest in the safety and monitoring of these systems would increase as well. However, as a system becomes more complex, generating a high-fidelity model that accurately describes the system becomes complicated. Therefore, imploring a data-driven method can provide to be more beneficial for such applications. This research proposes a novel approach for data-driven machine learning techniques on the detection and isolation of nonlinear systems, with a case-study for an in-orbit closed loop-controlled satellite with reaction wheels as actuators. High-fidelity models of the 3-axis controlled satellite are employed to generate data for both nominal and faulty conditions of the reaction wheels. The generated simulation data is used as input for the isolation method, after which the data is pre-processed through feature extraction from a temporal, statistical, and spectral domain. The pre-processed features are then fed into various machine learning classifiers. Isolation results are validated with cross-validation, and model parameters are tuned using hyperparameter optimization. To validate the robustness of the proposed method, it is tested on three characterized datasets and three reaction wheel configurations, including standard four-wheel, three-orthogonal, and pyramid. The results prove superior performance isolation accuracy for the system under study compared to previous studies using alternative methods (Rahimi & Saadat, 2019, 2020).

2017 ◽  
Vol 29 (2) ◽  
pp. 190-209 ◽  
Author(s):  
Jennifer Helsby ◽  
Samuel Carton ◽  
Kenneth Joseph ◽  
Ayesha Mahmud ◽  
Youngsoo Park ◽  
...  

Adverse interactions between police and the public hurt police legitimacy, cause harm to both officers and the public, and result in costly litigation. Early intervention systems (EISs) that flag officers considered most likely to be involved in one of these adverse events are an important tool for police supervision and for targeting interventions such as counseling or training. However, the EISs that exist are not data-driven and based on supervisor intuition. We have developed a data-driven EIS that uses a diverse set of data sources from the Charlotte-Mecklenburg Police Department and machine learning techniques to more accurately predict the officers who will have an adverse event. Our approach is able to significantly improve accuracy compared with their existing EIS: Preliminary results indicate a 20% reduction in false positives and a 75% increase in true positives.


Author(s):  
Kartik Palani ◽  
Ramachandra Kota ◽  
Amar Prakash Azad ◽  
Vijay Arya

One of the major challenges confronting the widespread adoption of solar energy is the uncertainty of production. The energy generated by photo-voltaic systems is a function of the received solar irradiance which varies due to atmospheric and weather conditions. A key component required for forecasting irradiance accurately is the clear sky model which estimates the average irradiance at a location at a given time in the absence of clouds. Current methods for modelling clear sky irradiance are either inaccurate or require extensive atmospheric data, which tends to vary with location and is often unavailable. In this paper, we present a data-driven methodology, Blue Skies, for modelling clear sky irradiance solely based on historical irradiance measurements. Using machine learning techniques, Blue Skies is able to generate clear sky models that are more accurate spatio-temporally compared to the state of the art, reducing errors by almost 50%.


2020 ◽  
Vol 69 ◽  
pp. 765-806
Author(s):  
Senka Krivic ◽  
Michael Cashmore ◽  
Daniele Magazzeni ◽  
Sandor Szedmak ◽  
Justus Piater

We present a novel approach for decreasing state uncertainty in planning prior to solving the planning problem. This is done by making predictions about the state based on currently known information, using machine learning techniques. For domains where uncertainty is high, we define an active learning process for identifying which information, once sensed, will best improve the accuracy of predictions. We demonstrate that an agent is able to solve problems with uncertainties in the state with less planning effort compared to standard planning techniques. Moreover, agents can solve problems for which they could not find valid plans without using predictions. Experimental results also demonstrate that using our active learning process for identifying information to be sensed leads to gathering information that improves the prediction process.


Sign in / Sign up

Export Citation Format

Share Document