Chapter 3. Demonstrating a Female-Specific Agency and Empowerment in Drug Selling

2020 ◽  
pp. 49-64
Author(s):  
Deborah R. Baskin ◽  
Ira Sommers
Keyword(s):  
Cell Reports ◽  
2019 ◽  
Vol 27 (2) ◽  
pp. 442-454.e5 ◽  
Author(s):  
Alex R.D. Delbridge ◽  
Andrew J. Kueh ◽  
Francine Ke ◽  
Natasha M. Zamudio ◽  
Farrah El-Saafin ◽  
...  

2016 ◽  
Vol 28 (1-2) ◽  
pp. 20-30 ◽  
Author(s):  
Hanifa J. Abu-Toamih Atamni ◽  
Yaron Ziner ◽  
Richard Mott ◽  
Lior Wolf ◽  
Fuad A. Iraqi

Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 379
Author(s):  
Hou-Hong Zhang ◽  
Yu-Cheng Xie ◽  
Han-Jing Li ◽  
Ji-Chong Zhuo ◽  
Chuan-Xi Zhang

Intersex(ix), a gene involved in the sex-determining cascade of Drosophila melanogaster, works in concert with the female-specific product of doublesex (dsx) at the end of the hierarchy to implement the sex-specific differentiation of sexually dimorphic characters in female individuals. In this study, the ix homolog was identified in the brown planthopper (BPH), Nilaparvata lugens, which contained two splice variants expressed in both female and male insects. We found that Nlix played a vital role in the early nymphal development of BPH, showing an accumulated effect. RNAi-mediated knockdown of Nlix at 4th instar led to the external genital defects in both sexes, consequently resulting in the loss of reproductive ability in female and male individuals. After dsRNA injection, the males were normal on testes, while the females had defective ovarian development. Nlix was also required for early embryogenesis. Notably, when the dsNlix microinjection was performed in newly emerged females, the copulatory bursas were abnormally enlarged while the other tissues of the reproductive system developed normally. Our results demonstrated the pleiotropic roles of Nlix in embryogenesis and development of the reproductive system in a hemimetabolous insect species.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 315
Author(s):  
Xu Yang ◽  
Kai Chen ◽  
Yaohui Wang ◽  
Dehong Yang ◽  
Yongping Huang

In insects, sex determination pathways involve three levels of master regulators: primary signals, which determine the sex; executors, which control sex-specific differentiation of tissues and organs; and transducers, which link the primary signals to the executors. The primary signals differ widely among insect species. In Diptera alone, several unrelated primary sex determiners have been identified. However, the doublesex (dsx) gene is highly conserved as the executor component across multiple insect orders. The transducer level shows an intermediate level of conservation. In many, but not all examined insects, a key transducer role is performed by transformer (tra), which controls sex-specific splicing of dsx. In Lepidoptera, studies of sex determination have focused on the lepidopteran model species Bombyx mori (the silkworm). In B. mori, the primary signal of sex determination cascade starts from Fem, a female-specific PIWI-interacting RNA, and its targeting gene Masc, which is apparently specific to and conserved among Lepidoptera. Tra has not been found in Lepidoptera. Instead, the B. mori PSI protein binds directly to dsx pre-mRNA and regulates its alternative splicing to produce male- and female-specific transcripts. Despite this basic understanding of the molecular mechanisms underlying sex determination, the links among the primary signals, transducers and executors remain largely unknown in Lepidoptera. In this review, we focus on the latest findings regarding the functions and working mechanisms of genes involved in feminization and masculinization in Lepidoptera and discuss directions for future research of sex determination in the silkworm.


Author(s):  
Vânia Tavares ◽  
Luís Afonso Fernandes ◽  
Marília Antunes ◽  
Hugo Ferreira ◽  
Diana Prata

AbstractFunctional brain connectivity (FBC) has previously been examined in autism spectrum disorder (ASD) between-resting-state networks (RSNs) using a highly sensitive and reproducible hypothesis-free approach. However, results have been inconsistent and sex differences have only recently been taken into consideration using this approach. We estimated main effects of diagnosis and sex and a diagnosis by sex interaction on between-RSNs FBC in 83 ASD (40 females/43 males) and 85 typically developing controls (TC; 43 females/42 males). We found increased connectivity between the default mode (DM) and (a) the executive control networks in ASD (vs. TC); (b) the cerebellum networks in males (vs. females); and (c) female-specific altered connectivity involving visual, language and basal ganglia (BG) networks in ASD—in suggestive compatibility with ASD cognitive and neuroscientific theories.


2021 ◽  
Vol 22 (3) ◽  
pp. 1114
Author(s):  
Ali Youness ◽  
Charles-Henry Miquel ◽  
Jean-Charles Guéry

Women represent 80% of people affected by autoimmune diseases. Although, many studies have demonstrated a role for sex hormone receptor signaling, particularly estrogens, in the direct regulation of innate and adaptive components of the immune system, recent data suggest that female sex hormones are not the only cause of the female predisposition to autoimmunity. Besides sex steroid hormones, growing evidence points towards the role of X-linked genetic factors. In female mammals, one of the two X chromosomes is randomly inactivated during embryonic development, resulting in a cellular mosaicism, where about one-half of the cells in a given tissue express either the maternal X chromosome or the paternal one. X chromosome inactivation (XCI) is however not complete and 15 to 23% of genes from the inactive X chromosome (Xi) escape XCI, thereby contributing to the emergence of a female-specific heterogeneous population of cells with bi-allelic expression of some X-linked genes. Although the direct contribution of this genetic mechanism in the female susceptibility to autoimmunity still remains to be established, the cellular mosaicism resulting from XCI escape is likely to create a unique functional plasticity within female immune cells. Here, we review recent findings identifying key immune related genes that escape XCI and the relationship between gene dosage imbalance and functional responsiveness in female cells.


Sign in / Sign up

Export Citation Format

Share Document